
V M L A B S

NUON Multi-Media Architecture

Aries 3 Specifications

Full OEM Version

Revision 26

September 26th, 2001

VM Labs, Inc.
520 San Antonio Road
Mountain View, CA 94040
Tel: (650) 917 8050
Fax: (650) 917 8052

PAGE 2 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

This full version of the documentation is for VM Labs internal use and
hardware OEM use only. It describes many hardware details which are
normally concealed by the BIOS and HAL software, as these may change in
future versions of the NUON architecture.
Copyright 1995-2001 VM Labs, Inc.
All Rights Reserved.
The information contained in this document is confidential and proprietary to VM Labs, Inc. and
is provided pursuant to a Non-Disclosure agreement between VM Labs, Inc. and the recipient.
It may not be distributed or copied in any form whatsoever without the prior written permission
of VM Labs.
NUON, NUON Multi-Media Architecture, the NUON logo, and the VM Labs logo are trademarks
of VM Labs, Inc.

This is a preliminary specification. VM Labs reserves the right to make changes to any information in
this document.
Revision History – Last Updated: October 19, 2001;

V7 RM hand-over to JM. Introduced short instruction forms. Revised memory map.

V8 Update interrupts, exceptions, busses. Video generator. Revised MUL.

V9 L3B specific. Audio output. Controller bus.

V10 DMA updated, Cache removed. Arithmetic shifter simplified.

V11 Audio in, video in. More bus info.

V12 MPE DMA modified, instructions updated.

V14 Extra MPE instruction pipeline stage. Interrupts, DMA, MPE regs. modified. JSR added.
V15 Alpha silicon notes. Fuller coverage of hardware. Farewell, BUTTM. First Beta stuff.

V16 Last release of alpha documentation.

V17 Beta documentation interim release, not complete yet.

V18 More info. in Appendix A. Still not complete for beta.

V19 Beta MPE instruction set and registers. More MPEG details.

V20 Corrections. Last release of Oz (beta) documentation.

V21 Aries changes, preliminary release.

V22 First full Aries version, preliminary release.

V23 First Aries 2 release. Now called NUON, not Merlin.

V24 Beta Aries 3 release. No Aries 3 MPE or PLL details yet.

V25 First full Aries 3 release.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 3

CONTENTS
Introduction___________________________________ 5

Overview..5
Internal Architecture ..6
Overview..7
Memory Map ...8
Differences between Aries 2 and
Aries 3..8
Differences between Aries 1 and
Aries 2..10
Compatibility with future NUON
Architectures..11
Conventions ...12

Media Processor Elements ______________________ 13
Overview..13
Memory maps ..14
Instruction and Data Cache15
Register File...16
Instruction Flow...18

MPE Function Units ___________________________ 20
Arithmetic Logic Unit (ALU)20
Multiply Unit (MUL)...21
Execution Control Unit (ECU)23
Register Control Unit (RCU)27
Memory Unit (MEM) ..28

MPE Register Set Reference_____________________ 40
MPE Instruction Set Reference___________________ 60
Main Bus___________________________________ 146

Arbitration..146
Main Bus DMA Controller147
DMA Commands...148
DMA Command Fields..151
MPE DMA Control and Status
Register ..157
Backward Pixel Transfers159
DMA Pixel Types ..159

Communications bus__________________________ 161
Communication Bus Identification
Codes ...161
Data Transfer Protocol...162
Data Flow Control ...163
Communication Bus Control Flags........................163
IO Devices on the Communication
Bus ...164

Other Bus __________________________________ 165
Command Format ..165
Restrictions on Other Bus DMA............................166
Control Registers ...166

System Bus _________________________________ 167
Communication with an External
Host Processor ...172

ROM Bus __________________________________ 179

ROM Communication Bus
Interface ...179

Video Output & Display Time-Base ______________180
Video Data Flow, Filtering, and
Scaling ...180
Video Data Encoding...185
Control Registers ...187
List of registers ..187
NTSC/PAL settings ...202
Display Data Formats ..204
Sub-Picture Video Channel208
Display Fetch Mechanism211
Video Interface Timing..211
Video Clock Architecture and
synchronization..211

Video Input _________________________________213
Video Capture..213

Audio Output ________________________________217
Audio DMA...218
Synchronous Serial Audio Output
Channel (I2S) ...221

Audio Inputs ________________________________234
Using Audio Input Channel 2 to
connect to a CD or DVD drive239

Miscellaneous IO Controller ____________________242
System Timers ...242
ROM Interface Control..244
General Purpose IO Pins..246
System Bus Control ...260
PWM Output Control ..261
Power On Configuration..262
Communication Bus Configuration262

Controller Interface ___________________________264
Protocol..264
Controller Interface Control
Registers ..265

Serial Peripheral Bus Interface __________________269
Serial Peripheral Bus Master269
Serial Peripheral Bus Slave....................................269
Serial Peripheral Bus Control
Registers ..272

Dual SIO Channel Interface_____________________276
Introduction ...276
Programmers Model ..276

Debug Control Module ________________________281
MPE Breakpoints...281
Exceptions ...282
DMA Breakpoints and Exceptions282
Debug Module DMA...282
Watchdog Controller ...282
Debug Module Control Registers282
Watchdog Timer ..287

PAGE 4 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Macroblock Decoding Unit (BDU)_______________ 288
BDU IO Interface.. 289
BDU Units... 295

Coded Data interface__________________________ 303
Coded Data Interface Operation............................ 304
CDI IO Registers... 314
Commands .. 315

Motion Compensation Unit_____________________ 317
MCU Communication Bus
Interface .. 317

Aries 3 Electrical Specifications _________________ 320
Aries 3 Package Options 320
Aries 3 Pinout - QFP-208 Package 321
Aries 3 Pinout - BGA-256 Package 324
Signal Description... 328
System Bus Overview... 337
Main Bus SDRAM Interface................................ 355
ROM Interface .. 357
Video Interface.. 362
Audio Interface ... 363
Controller Interface ... 366
Coded Data Interface description.......................... 367
Clocking and Reset ... 374
Power Up Mode Selection 374

ARIES 3 Bug List ____________________________ 376
MPE .. 376
Main Bus DMA and SDRAM
Interface .. 377
VDG.. 377
Communication Bus.. 378
Other Bus .. 378
GENERAL IO... 378
Debug Controller... 379
I2C Interface ... 379
Audio Interface ... 379

MMP-L3C (ARIES 2) Bug List _________________ 381
MPE .. 381
Main Bus DMA and SDRAM
Interface .. 382
Communication Bus.. 382
Other Bus .. 383
GENERAL IO... 383
System Bus Interface... 383
Audio Interface ... 383

MMP-L3B (ARIES 1) Bug List _________________ 385
MPE .. 385
Main Bus DMA and SDRAM
Interface .. 386
Communication Bus.. 386
Other Bus .. 387
GENERAL IO... 387
System Bus Interface... 388
Audio Interface ... 389
BDU .. 390
VDG.. 390

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 5

INTRODUCTION

The NUON Aries 3 described in this document is the chip at the heart of the NUON Multi-Media
Architecture (the MMA). The hardware engineers who created the NUON chip wrote this document, so
this is the definitive reference work describing it. However, this document does not describe the
associated software, or any particular implementation of NUON.

The variants of the NUON device are currently:

• Aries 1 (MMP-L3B) is the first production NUON device. It is the successor to the pre-
production prototype known as Oz (MMP-L3A).

• Aries 2 (MMP-L3C) is the successor to Aries 1. The few differences are described below.
Functionally Aries 1 and 2 are largely identical.

• Aries 3 is the most recent version at the time of writing. Aries 3 offers faster operation and larger
on-chip memories, so has increased functionality.

Note that systems based around Oz are obsolete prototypes, and applications written for the NUON
Architecture do not have to be compatible with them.

The NUON Architecture was developed to provide a high performance yet very cost-effective solution
to the processing and content requirements of the next generation of consumer multimedia systems.

Content developers can target their interactive applications to a single development platform. NUON
compatible applications can then run on any product that incorporates the NUON Architecture, as long
as they conform to some specific rules. These rules are beyond the scope of this document.

Overview
This table summarizes the most significant Aries 3 changes relative to Aries 2 and Aries 1.

PAGE 6 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

 Aries 1 Aries 2 Aries 3
Process 0.35u 5M 0.25u 5M 0.18u 6M
Package 356 TEBGA (256+100) 272 BGA (256+16) 208 PQFP

(option for 256 BGA)
VDD Core 2.5 ± 5% Volts 2.5 ± 5% Volts 1.8 ± 5% Volts
VDD I/O 3.3 ± 5% Volts 3.3 ± 5% Volts (5 VT) 3.3 ± 5% Volts (5 VT)
Power 3.1 Watts max

2.3 Watts typical for DVD
2.8 Watts max
2.2 Watts typical for DVD

1.8 Watts max (108 MHz)
1.4 Watts typical for DVD

MPE Ram Mpe0 8/8 cached
Mpe1 4/4
Mpe2 4/4
Mpe3 4/4 cached

Mpe0 8/8 cached
Mpe1 4/4
Mpe2 4/4
Mpe3 4/4 cached

Mpe0 26/20 cached
Mpe1 16/16
Mpe2 16/16
Mpe3 20/20 cached

MPE Speed 54 MHz 54 MHz 54 and 108 MHz modes
Mainbus
DRAM

108 MHz SDRAM x16
(2 bank only)

108 MHz SDRAM x16
(2 bank or 4 bank)

108 MHz SDRAM x16

Sysbus
DRAM

27 MHz EDO x32

54 MHz SDRAM x16 or
27 MHz EDO x32

54 MHz SDRAM x16

Other
Features

+ SD MPEG2 decode
+ DVD CSS-1
+ DVD subpicture
+ CCIR 656 video out
+ video overlays, scaling
+ CCIR 656 video in
+ 6 audio out channels
+ 2 audio in channels
+ NUON Controller Ports
+ I2C master / slave I/F

+ split master / slave I2C
+ sysbus enhancements

+ 2 audio out ch. (8 total)
+ Dual SIO ports
+ Larger audio-out FIFO
+ Glueless ROM I/F
+ Glueless 8bit flash I/F
+ 108 MHz PLL
+ Audio PLL

Internal Architecture
At the heart of the NUON architecture are four processors, known as MPEs (or NUON Media Processor
Elements). These are VLIW processors with five function units, and each processor has its own private
program and instruction memory. They run at up to 108 MHz, and can execute a maximum of five
instructions per clock cycle, although because you can actually independently decrement two counters as
well, we claim that we can execute seven instructions per clock cycle. The MPEs are described in great
detail later in this document.

Each of the four MPEs, referred to as MPE0 to MPE3, has the same processor core, and all can run the
same code. However, MPEs 0 and 3 also contain cache controllers, so that one of them (or, rarely, both)
can execute larger programs than will fit in the program memory.

Three busses run between the MPEs, allowing them to talk to each other and to external memory. These
busses are:

1. The Main Bus – this is a 32-bit bus with a maximum data transfer rate of 216 Mbytes/sec either
between MPE memory and external SDRAM, or from one MPE to another. This bus is optimized for
transferring bursts of data, and has extensive support for pixel transfer, including bi-linear
addressing and Z-buffer compares. It is also used for video and audio output. All NUON systems
will have a minimum of 8 Mbytes of SDRAM on this bus.

2. The Communication Bus – this is another 32-bit bus, with a maximum data transfer rate of around
172 Mbytes/sec, and is used for transferring 128-bit packets either between the MPEs, or to allow

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 7

MPEs to talk to peripheral devices. This is a very low latency bus, and is ideal for inter-processor
communication.

3. The Other Bus – this is a 16-bit bus, and is like a simpler slower version of the Main Bus. It is used
to talk to System Bus memory. It can only perform linear data transfers, at a maximum rate of 108
Mbytes/sec. All NUON systems will have a minimum of 8 Mbytes of DRAM on this bus.

These busses may all be used by explicitly requesting transfers, and the cached MPEs may also
implicitly use the Main and Other busses to execute code and transfer data.

The major blocks of NUON device are summarized in this diagram:

MPE2MPE0

Other Bus
arbitration and

DMA

System Bus
Interface

MPEG hardware
assist

Main bus arbitration,
DMA, and SDRAM

interface

ROM
interface

Video InputCoded Data
Interface

Audio
IO

Video Time-base
& Display
Generator

Controller I/F and
General IO

Other bus

Main bus

Communication bus

Wave-table and
BIOS ROM

System Bus SDRAM

Controllers, low-
speed devices

Coded Data I2S in

CCIR 656 in

CCIR 656 out

I2S out & IEC 958

MPE1 MPE3

Figure 1. NUON Internal Architecture

Overview
The NUON Media Processor is designed to be a high performance, low cost, interactive alternative to
the audio, video, graphics and processor requirements of a consumer MPEG-2 product.

In order to achieve these goals, we chose a parallel processing architecture. A set of four Media
Processor Elements (MPEs) provides the performance necessary for high-end media applications (such
as MPEG-2 and 3D graphics).

The MPEs are each fully programmable, very-long-instruction-word (VLIW) processors. Each MPE can
independently saturate the memory busses if necessary, replacing the need for custom Bit-Blit functions.
MPEs each contain a scalar and vector register set, a 32 x 32 bit multiplier, a 64-bit ALU and barrel
shifter, linear and bi-linear address generation and a powerful execution control unit. Up to seven
operations using these function units can operate in parallel, resulting in extremely efficient inner loops.
Code compression and efficient execution control units allow MPEs to also perform complex outer loop

PAGE 8 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

operations. This level of programmability provides the opportunity to avoid the unnecessary calculations
and bus operations often associated with SIMD or hardwired architectures.

MPEs can efficiently perform 3D geometry operations (such as vector arithmetic), image operations
(such as texture mapping, filtering and shading), data transformations (such as Huffman coding and
decoding, and Cosine Transforms), data sorting and complex decision making, all in software.

While the instruction set has been optimized for these types of operations, we made great efforts to
retain generality. This generality provides developers with the opportunity to experiment with new types
of low-level algorithms, as well as at higher levels.

The problems of image manipulation and 3D graphics are very amenable to a parallel architecture. Many
good algorithms exist which can make use of multiple parallel processors (MPEs in this case). First
generation MMP devices will contain four MPEs. Future versions may contain many more than this.
The architecture and BIOS contain specific features to support upward compatibility. Indeed, correctly
written applications will actually take advantage of the additional processors in future versions.

Memory Map
The memory map is a single 32-bit byte-address space from the perspective of the MPEs. Two distinct
hardware mechanisms are provided for accessing this memory, the Main Bus and the Other Bus. The
mechanism required to access each space is shown in this table.

Address Size Main
Bus

Other
Bus

Description

$0000 0000 - $1FFF FFFF 512M – – Reserved
$2000 0000 - $2FFF FFFF 32x8M a a MPE Memory and I/O spaces
$3000 0000 - $3FFF FFFF 256M – – Reserved
$4000 0000 - $7FFF FFFF 1024M a Main Bus DRAM (media RAM)
$8000 0000 - $8FFF FFFF 256M a System Bus DRAM
$9000 0000 - $9FFF FFFF 256M a System Bus ROM / SRAM 0
$A000 0000 - $AFFF FFFF 256M a System Bus ROM / SRAM 1
$B000 0000 - $EFFF FFFF 1024M – – Reserved
$F000 0000 - $F0FF FFFF 16M a ROM – BIOS & Audio wave-tables
$F100 0000 - $FFFF FFFF 239M – – Reserved
$FFF0 0000 - $FFFF FFFF 1M a Other Bus IO

Differences between Aries 2 and Aries 3

QFP-208 and BGA-256 Package Options
Aries 3 will be available in a QFP-208 package, as well as in a BGA-256 package that is nearly drop-in
compatible with current Aries 2 systems (the only required changes are to lower the core voltage supply
as shown above, and to update the boot ROM/FLASH program).

Integrated PLL for 108 MHz Clock Generation
Aries 3 integrates a PLL which allows a cheaper 27 MHz external crystal to be used instead of the
108MHz crystal needed with Aries 2. This PLL generates the internal 108 MHz and 54 MHz and 27
MHz clocks. For drop-in compatibility with Aries 2 systems, the PLL is bypassed so that an external
108 MHz crystal can feed the clock input of the chip.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 9

Integrated PLL for Audio Clock Generation
Aries 3 integrates a second PLL which is used to generate a master audio clock phase-locked to the
video clock. This allows the use of cheaper audio DACs that do not include the PLL needed for Aries 2
systems. The Aries 3 audio PLL can be bypassed so that an external audio clock can be input as it is in
Aries 2 systems.

Increased MPE RAM
The amount of local Data-RAM / Instruction-RAM for each MPE in Aries 3 has been increased
significantly, to 26KBytes / 20KBytes for MPE0, 16KBytes / 16KBytes for MPE1 and MPE2, and
20KBytes / 20KBytes for MPE3. Both MPE0 and MPE3 have dcache / icache support for up to
16KBytes / 16KBytes.

Increased MPE Speed
The MPEs in Aries 3 run at either 108 MHz, for high-performance applications, or at 54 MHz for
backward compatibility with existing Aries 2 applications.

Integrated SIO Ports
Two SIO ports have been added for communication with micro-controllers that do not have I2C. These
ports can optionally be enabled on certain GPIO pins.

Additional I2S Audio Output Pair
Aries 3 integrates an additional pair of I2S audio outputs, which supports down-mixed audio at the same
time as 5.1 audio output, or any other combination of 8 channels.

Enhanced SPDIF and Deeper Audio Buffers
Aries 3 SPDIF can run at a half or a quarter of the I2S sample rate, using its own DMA buffer. Also the
audio output buffers have been increased in size to reduce the demands placed on the dma subsystem.

Glueless Interface to External ROM and FLASH
Aries 3 supports a glue-less interface to external ROM, by multiplexing the Boot ROM address and data
lines onto the pins used for the system bus. This eliminates the need for the external latches required on
Aries 2 systems. Also, Aries 3 supports a glue-less interface to NAND flash memory parts
(SmartMedia type).

Other Changes
1. Remove the MPE 0 ROM. The equivalent function can be obtained by using the additional data

RAM in MPE 0 to store the tables formerly held in ROM.

2. Several other detailed changes in the audio output hardware are described in the audio section of
this document.

3. Provide additional GPIO functions on the unused balls of the BGA package option.

RTL Bug Fixes - The following bugs have been fixed (refer to the Aries 2 bugs list):

PAGE 10 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

4. The I2C controller cannot send a start code in the middle of a transfer.
An additional master type has been added to allow this.

Differences between Aries 1 and Aries 2
1. Support System Bus SDRAM in internal mode. Aries 2 supports one or two banks of 54 MHz

16-bit SDRAM in internal mode. This is designed to closely match the performance of the 32-bit
EDO DRAM. A wide variety of 16, 64, 128 and 256 Mbit SDRAMs are supported in 2 or 4 bank
configurations.

2. Support 4-bank 64 Mbit SDRAM on the Main Bus. This change allows 4 bank SDRAMs to be
used on the Main Bus.

3. Allow optional Separation of SPB master and slave. On Aries 1 the Serial Peripheral Bus master
and slave were combined inside the chip, and available as a single bus on GPIO3-2. For Aries 2
they may be optionally separated, with the master on GPIO11-10 and the slave on GPIO3-2. This
is achieved by setting the slaveAlone bit in the spbSlaveStatus register in the Serial Peripheral
Bus controller, and the gp11mode and gp10mode bits in the gpioSpec register in the
Miscellaneous IO controller.

4. Remove dead cycles during external mode System Bus ownership. This change improves the
System Bus performance in external mode by increasing the internal FIFO size to allow closely
packed bursts. The burst-to-burst delay is reduced to one clock cycle; and the bus is relinquished
immediately after the end of the last burst of the Other Bus DMA. This will roughly double the
DMA transfer rate in external mode.

5. Modify external mode System Bus arbitration to prevent the external host starving for
bandwidth. The external host currently only gets a few percent of the bus bandwidth while
NUON is doing back-to-back DMA transfers. The intention of this change is to force re-
arbitration more frequently, so that the host can maintain enough real-time performance.
The mechanism for this is two programmable length loop counters, so that re-arbitration can be
forced in the middle of a NUON DMA block. Every time the first counter reaches zero, NUON
will retract bus busy at the end of the current burst, wait the second programmed count length,
and then re-arbitrate

6. Support external mode System Bus single cycle burst transfers. If SDRAM is used as the
external DRAM, 32-bits of data can be read every clock cycle. This allows (in theory, anyway)
burst transfer timing of 4-1-1-1 or similar.

7. Host readable version number. The top byte of the host interrupt control register, which reads
zero in Aries 1, is now an architecture version number. It reads $02 in Aries 2.

8. Tri-state on the System Bus DRAM control lines. The DRAM control lines may be tri-stated to
support DRAM sharing in internal mode.

9. Expand the SYSCSB address spaces. This allows a split bus architecture to have more than
16MB addressable on the host side by NUON.

10. Modify the CDI. Extra logic has been added to the CDI to support CD-DA mode with certain
DVD drives.

RTL Bug Fixes - The following bugs have been fixed (refer to the Aries bugs list):

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 11

11. The I2C slave cannot flag that it is empty to an external master.
The slave will not acknowledge (NACK) its own address under two conditions: for write if the
receive buffer is full, for read if the transmit buffer is empty.

12. General IO register reads may conflict with Serial Device Bus input data.
The interaction is now handled properly and no packets are lost.

13. The debug controller system reset and watchdog functions do not reset the MPEs.
This reset now occurs correctly.

14. The host reset function does not work.
This reset now occurs correctly.

15. Data transfers can be corrupted in the chip select address spaces.
The System Bus has been significantly changed for external mode, including fixing this problem

16. The dataDelay flag for audio out delays by the wrong clock.
This is corrected, allowing more flexibility for the choice of audio DACs for Aries 2. It has no
effect on current systems, as this bit is never set.

17. Audio register reads may conflict with audio input data.
The interaction is now handled properly and no packets are lost.

18. Audio input clock polarity is not programmable in master mode.
A new control bit allows the capture clock polarity to be programmed independently of the
output clock.

19. Video clock relationship to video data is not defined.
Already fixed by a metal change in Aries 1.1, this is now reflected in the source RTL.

20. Sub-picture does not work at some horizontal alignments.
Again, already fixed by a metal change in Aries 1.1, this is now reflected in the source RTL.

21. Vertical filtering of progressive MPEG data with downscaling is wrong.
The filter now operates correctly.

22. Video Output can be shifted right by 16 pixels
The DMA will no longer lock out the VDG for too long.

23. Last Block Element Truncation “White Dots Bug”
The truncation error in the BDU is fixed.

Compatibility with future NUON Architectures
It is beyond the scope of this document to discuss future generations of the NUON Architecture.
However, we want to set some guidelines for you to follow, so that your software will be compatible
with small variations of the architecture, and will be either compatible with or easily ported to major
new versions of the architecture.

The golden rules are:

1. Do not address peripheral hardware directly. This includes the video input and output channels, the
audio input and output channels, the joystick interface, the coded data interface, and any other
external devices. All of these may change, and you must always use VM Labs supplied drivers.

2. Do not assume the speed of operations is fixed. Future versions of the system may well be clocked
faster, and have faster memory interfaces. You should also note that memory devices attached to

PAGE 12 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

NUON will also vary in speed in production. Different SDRAM devices may vary in performance
by a few percent, and System Bus memory may be significantly slower in some applications.

3. Try to avoid using undocumented hardware behavior. Do not assume hardware register bits that
currently read zero will always do so, or that you can get away with writing non zero values to
unused locations. Don’t make assumptions about minimum or maximum response times, e.g. for
DMA transfers. If something is not clear, ask our technical support staff to clarify it for you.

Conventions
MMA refers to the NUON Multi-Media Architecture

MMP refers to a NUON Multi-Media Processor device, which may be used in NUON compatible
systems, and possibly incompatible systems too.

Data elements
Byte 8 bit value
Word 16 bit value
Scalar / Long 32 bit value
Half-vector 64 bit value (8 bytes)
Vector 128 bit value (16 bytes)

Notation
+ Logical OR
. Logical AND
/ Logical NOT
$xx Hexadecimal value xx
%bbbb Binary value bbbb

The NUON chip is a big-endian device, in the style of the Motorola 68000 family. Strictly speaking this
is big-endian byte, word, long, and so on ordering, but little-endian bit ordering. This implies that bit 31
is the most significant bit in a long, and byte 0 is the most significant byte in a long. Compare this to the
more sensible Intel style, where the highest numbered bit or byte is always the most significant; or to the
Power PC style, where the lowest number is always most significant.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 13

MEDIA PROCESSOR ELEMENTS

Overview
The NUON Media Processor Elements (MPEs) are each fully independent, variable-length very-long-
instruction-word processors. This diagram gives an overview of the MPE internal architecture.

Execution
Control Unit

(ECU)

Memory
and I/O Unit

(MEM)

Register
Control Unit

(RCU)

Arithmetic/
Logic Unit

(ALU)

Multiplier
Unit

(MUL)

Very Long Instruction

Instruction Decompression and Routing

Main Bus
DMA

Register File

Local Instruction
Ram / Rom

Other Bus
DMA

Comm Bus
Interface

Local Data
Ram / RomCache Control

Coprocessor
Interface

Coprocessor
DMA

Figure 2 – MPE Internal Architecture

Each MPE has five distinct function units:

ECU – Execution Control Unit
RCU – Register Unit
ALU – Arithmetic Logic Unit
MUL – Multiply Unit
MEM – Memory Unit

The VLIW architecture allows all five function units to operate in parallel, without the complex dynamic
instruction scheduling hardware of super-scalar processors. The scheduling is already given in the
instruction stream. In essence, the scheduling task is moved from the hardware to the programmer and
optimizing tools.

Instructions are encoded into instruction packets. Each instruction packet contains from one to five
instructions, each for a different function unit. A packet may contain instructions for any combination of

PAGE 14 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

function units. Instruction packets are therefore of variable length, from a minimum of sixteen bits to a
maximum of one hundred and twenty-eight bits (see below for restrictions on large packets).

For example, the following set of instructions comprises one instruction packet and will be issued to the
function units in one clock cycle:
{ add r1,r2,r3 ; ALU operation

mul r4,r5 ; Multiply operation
ld_s (r6),r7 ; Memory operation
addr #4,rx ; RCU operation
dec rc0 ; RCU operation
dec rc1 ; RCU operation
bra eq,loop ; Execution Control Unit operation

}

The RCU decrement instructions may be encoded in parallel with any other RCU operation, allowing it
to execute three instructions per clock cycle.

Each MPE can therefore perform 7 independently programmable instructions in every clock cycle, for a
very theoretical maximum execution rate of 378 million instructions per second at 54 MHz.

Typically, the inner loops of performance critical applications will be tuned to use as many function
units as possible in every clock cycle. However this is not always possible in the outer loops or in
general code streams, and in outer loop code most instruction packets may contain no more then one or
two instructions and so will be as compact as more standard microprocessor code.
The NUON assembler, compiler and optimizer tools help automate this packing, in addition to
optimizing register usage and critical paths.

MPEs generally execute code from on-chip instruction RAM or ROM, and access local data RAM and
ROM, which are on a separate bus to the program memory and so may be accessed in parallel. MPEs 1
to 2 cannot execute code from off-chip memory, but MPE 0 and 3 contain instruction and data caches,
and can execute code and access data from any memory space on the Main Bus or Other Bus.

MPEs are fundamentally big-endian, although this has little meaning, since we refer to more abstract
data type objects in general, rather than bytes or words. The big-endian style is the perverse form of the
Motorola 68000 family, i.e. big-endian byte ordering, and little-endian bit ordering.

Memory maps
Each MPE has an identical view of its memory map. This allows MPE code to run on any MPE in the
system.

From the point of view of the Main Bus and Other Bus memory map, this corresponds to each MPE
thinking that internally it is MPE 0.

Label Address Maximum Size Description
dtrom $20000000 - $200FFFFF 1 MByte Data ROM
dtram $20100000 - $201FFFFF 1 MByte Data RAM
irom $20200000 - $202FFFFF 1 MByte Instruction ROM
iram $20300000 - $203FFFFF 1 MByte Instruction RAM
dtags $20400000 - $2047FFFF 0.5 Mbyte Data tag RAM
itags $20480000 - $204FFFFF 0.5 Mbyte Instruction tag RAM
ctlreg $20500000 - $205FFFFF 1 MByte Control register space
 $20600000 - $207FFFFF 2 Mbyte reserved

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 15

MPE Memory Sizes
In Aries 1 and 2, the MPE program and data RAM sizes are as follows:

 Data RAM Program RAM
MPE 0 8 Kbytes 8 Kbytes
MPE 1 4 Kbytes 4 Kbytes
MPE 2 4 Kbytes 4 Kbytes
MPE 3 4 Kbytes 4 Kbytes

In Aries 3, the MPE program and data RAM sizes are as follows:

 Data RAM Program RAM
MPE 0 26 Kbytes 20 Kbytes
MPE 1 16 Kbytes 16 Kbytes
MPE 2 16 Kbytes 16 Kbytes
MPE 3 20 Kbytes 20 Kbytes

In addition to these, in Aries 1 and 2 MPE 0 also contains 16 Kbytes of data ROM. This function is
replaced by additional data RAM in Aries 3.

MPEs 0 and 3 contain cache tag memory as follows:

 Data Tag RAM Program Tag RAM
MPE 0 1024 bytes 1024 bytes
MPE 3 512 bytes 512 bytes

MPE 0 Local ROM memory map
Address Comments
0x20000000 Recip LUT
0x20000200 Sine LUT
0x20000604 RSqrt LUT
0x20000940 AC3 Tables
0x20002ff0 MPEG Audio Tables

Instruction and Data Cache
MPE 0 and MPE 3 both have the ability to directly access data and code outside their local space
through both a data and instruction cache mechanism. The intention behind the cache is to allow one
MPE to be designated as the C-language “main” processor, and the others to be considered co-
processors to it, although other uses are clearly possible.

MPE 0 will have better performance due to its larger RAM sizes, but sometimes it may be necessary to
use MPE 0 as a co-processor (e.g. when decoding a compressed audio stream), in which case MPE3 may
be used as the cached processor.

Cache Setup
Both the instruction and data caches are configured by a control register with the following fields:

PAGE 16 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

cWayAssoc This gives the number of cache ways, for multi-way set associative caching. Values of
1-8 way set associative may be set. Pseudo multi-way set associative caching is
achieved in the MPE with what is effectively a direct-mapped cache hardware by
searching each of the ways in turn. One clock cycle per way is required to search, with
the first way to be searched being the last one on which a hit was made.

cWaySize This gives the size of each cache way, so the total memory used by the cache is the
product of this and the number of ways. Allowable way sizes are 1024, 2048, 4096 or
8192 bytes. This means that not all of the instruction or data memory needs to be
assigned to the cache, allowing a mixture of resident and cached instructions or data to
be present in the MPE. The cache will use MPE memory starting from the lowest
address.

cBlockSize This gives the size of the block fetched on a cache miss. The block size may be set to
16, 32, 64 or 128 bytes. The optimum block size is dependent on the program being
executed, and the bus latencies when it is executing, but generally the optimum is in
the middle of this set, at either 32 or 64 bytes.

Cache initialization
Before the cache can be used the tag RAM must be cleared to zero, to mark all the cache lines as invalid.
Once this has been done, and the cache control registers set up, then the cache may be directly used.

Tag RAMs
The tag RAMs are 32-bit memories that may be used for data storage when the cache is not in use. As
they are only 32-bit, they may not be used for vector loads and stores, or for pixels larger than 32-bit.

As tags, the entry format is:

Bit Function
31-4 This is the upper part of the address of the cached entry. When read out for compares, it will be

properly masked based on the way size. When read out for use as the write back address a different
masking is done based on the block size.

3-2 Unused
1 This flags that the entry is dirty, and only applies to the data cache. This means that the block data will

be written out to main memory before the cache block can be re-used.
0 This flags that the cache entry is valid.

Register File
Each MPE has a general-purpose register file that may be accessed in different modes depending on the
instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 17

r00 r01 r02 r03
r04 r05 r06 r07

015163132474863

sv0
sv1
sv2
sv3
sv4
sv5
sv6
sv7

r08 r09 r10 r11
r12 r13 r14 r15
r16 r17 r18 r19
r20 r21 r22 r23
r24 r25 r26 r27
r28 r29 r30 r31

031031031031127 0

p0
p1
p2
p3
p4
p5
p6
p7

Accessed as Vector Registers
(8 Vectors, each 128 bits)

1024 Storage Elements
Simultaneously accessible in different modes (instuction dependent)

Accessed as Scalar Registers
(32 Scalars, each 32 bits)

Accessed as Small-Vector Registers
(8 Small-Vectors, each 4x16 bits)

Accessed as Pixel Registers
(8 Pixels, each 3x16 bits)

01516313247

v0
v1
v2
v3
v4
v5
v6
v7

MPEs have been optimized for certain specific data types, while remaining as general as possible (in the
belief that we cannot foresee all future applications). In particular, MPEs are efficient at all types of
graphics operations, including geometry and rendering.

For geometry, we typically use signed 32-bit numbers. MPEs have 32-bit scalar registers, and vector
registers which hold four 32-bit scalars. For rendering, we require three color elements (such as Red,
Green, Blue, or Y, U and V). Intermediate results often require several fraction bits, and need to be
signed. MPEs can reuse vector registers to efficiently store 16 bit signed pixel data. Each vector register
holds one pixel in this orientation.

For the remainder of this document, we will use the following syntax for data types, and their register
representation:

• Scalars, which are a 32-bit signed number, with arbitrary binary point position. Any 32-bit
register can hold a Scalar.

031

Scalar

PAGE 18 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

• Vectors, which are a group of four scalars in four consecutive registers, where the first register
number must be a multiple of four.

Vector
031 031 031 031 3210

• Small vectors, which are like vectors, except that operations with them are only on the 16 most

significant bits of each register. When a small vector is written, the 16 LSBs are usually set to
zero.

Small Vector
031 031 031 031 3210

• Pixels, which are like small vectors, except that they only use registers 0-2. Any instruction that

writes a pixel will clear the low 16 bits of the three scalars to zero, and leaves the fourth scalar
unchanged. A pixel with an associated Z value is actually a (small) vector, as it has four
significant fields.

Pixel
031 031 031 210

• Half Vectors, which are two 32-bit Scalars. Used for the butterfly instructions to represent a

scalar register pair on an even register boundary

Half Vector
031 031 10

Instruction Flow
The MPE units have a three to four stage pipeline. Instruction packets are dispatched into this pipeline
every clock cycle, with a few exceptions, which are described below. These pipeline stages are:

1. Instruction route and decode
2. Instruction fetch

3. Instruction operand fetch, execute, and write-back

In addition to these three cycles, some classes of operation take longer:

• Multiply operations take two cycles to complete, this includes scalar multiply, small vector multiply,
and the dot product instructions.

• Load operations from data RAM do not write back the loaded data until the end of the clock cycle
which follows the execute cycle.

The main effect of this pipeline is that the two instruction packets after a jump, branch or return from
subroutine instruction are always executed, whether the branch is taken or not. This is referred to as the
instructions in the delay slots. In the cycle after those two packets, either the branch target or the next
instruction is executed. This means that no cycles are wasted, if you can find something to do in the
delay slots. A special form of the jmp instruction forces two empty delay slots, if the jump is taken.

• The pipeline will stall under the following conditions:

• When in single-step mode, the MPE will stall after every instruction.

• When an exception occurs. This is a debug condition that halts the MPE and interrupts the debug
control module.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 19

• When a DMA data transfer operation conflicts with the MEM unit instruction about to be executed.

Instruction Packet Restrictions
The following instruction combinations are not allowed, and should be flagged as an error by the
assembler:

1. A memory load instruction may not be followed in the next instruction packet by any of the
following instruction types:
♦ a MEM unit register to register move
♦ a move immediate
Memory loads complete in two clock cycles, whereas register to register moves complete in one, so
there is a conflict for the register write port.

2. A multiply unit mul, mul_sv , mul_p or dotp instruction may not be followed in the next instruction
packet by an addm or subm MUL unit arithmetic operation. Multiplies complete in two clock
cycles, whereas the arithmetic operations complete in one, so there is a conflict for the register write
port.

3. Any instruction in the packet after a memory load or a two-cycle multiply unit instruction (mul,
mul_sv, mul_p or dotp), must not reference the target register. This is because if an interrupt or
pipeline stall occurs between the two instructions, then the two cycle instruction will have completed
and the new data will be present; but if no pause occurs then the old data will still be present.

4. A single register port is shared by the following instructions; only one of these instructions may be
present in a given instruction packet.
ECU jmp/jsr cc,(Si) | cc,(Si),nop
RCU mvr/addr Si,RI
ALU and/or/eor/ftst Si,>>Sj,Sk | Si,<>Sj,Sk
MUL mul Si,Sk,>>Sq,Sk | #n,Sk,>>Sq,Sk

5. Any instruction combination that would imply two simultaneous writes to the same register in the
register file, including scalar and vector registers that overlap, must not occur. Register writes can be
performed by the ALU, MUL and MEM units. For example, an ALU instruction and a register-to-
register move must not target the same register if they are in the same packet, and a load instruction
must not be followed by an ALU instruction in the next packet would write to the same register. This
also applies to scalar and vector registers that are physically the same register.

6. No instruction packet may span more than two consecutive aligned 64-bit blocks. This puts an upper
limit of 80 bits on arbitrarily aligned packets, and an absolute upper limit of 128 bits on any
instruction packet. A special pad instruction form exists for padding out packets larger than 80 bits
to put the next one on any desired boundary.

PAGE 20 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

MPE FUNCTION UNITS

Arithmetic Logic Unit (ALU)

Overview
The Arithmetic Logic Unit essentially consists of a 32-bit Arithmetic Operation Unit (AOU), with a
variety of pre-processing options on the source data.

The source data may include immediate data, scalar registers, vector registers or pixel registers.

ALU Instruction set summary
The ALU instruction set includes both 16 and 32-bit instruction forms. Refer to the Instruction Set
Reference starting on page 60 for more details.

Mnemonic Description
abs Convert the signed integer to its unsigned absolute value
add Arithmetic addition
add_sv Add small vector
and 32-bit logical AND of A and B
as Arithmetic shift
asl Arithmetic shift left (also used for lsl)
asr Arithmetic shift right
bclr Clear a bit in a register
bits Bit field extraction
bset Set a bit in a register
btst Test a bit in a register
butt Butterfly operation (sum and difference) of two scalar values
cmp Arithmetic compare
copy Register to register move through the ALU
eor 32-bit logical EOR of A and B
ftst Test a bit field
ls Logical shift
lsr Logical shift right
msb Find the MSB function of the input value.
neg Arithmetic complement
nop Null operation
not Logical complement
or 32-bit logical OR of A and B
sat Arithmetic saturation
sub Arithmetic subtraction
sub_sv Subtract small vectors

A register port is shared by the ALU, for 3 register operand instructions; by the RCU, for addr
instruction with a register operand; and by the ECU for jmp instructions with the jump address held in a
register. Only one of these instruction forms may be present in any instruction packet.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 21

Shift
The ALU shifter can perform rotation or arithmetic shifts in either direction, of up to 32 bits of input
data. The ALU shifter should not be confused with the bit-extraction units in the multiplier.

Arithmetic shifts to the right maintain the sign of the original value. Arithmetic shifts to the left shift in
zeros.

In the instruction set summaries, an arithmetic shift is denoted by the >> symbol. Rotations are denoted
by the <> symbol. Positive values are considered to be right shifts or rotates. Negative values are left
shifts or rotates.

Sign Extend
Extends the sign of the input data to a 32-bit two’s complement number. In the case of positive numbers,
the most significant bits are filled with zeros. In the case of negative numbers, they are filled with ones.

MSB
This unit extracts the number of significant bits of a signed number. The result is in the range 0 to 31.
Refer to the MSB instruction description for more details.

Flags
The ALU has the following flags:

Name Description
z Zero Flag. Set if the result of a scalar arithmetic operation was zero.
c Carry / Borrow Flag. Set if there is a carry from an addition or a borrow from a subtraction.
v Overflow Flag. Set if the sign of the result of a scalar add or subtract operation was incorrect.

This is signed arithmetic overflow.
n Negative Flag. Set if the result of a scalar arithmetic operation was negative.

Refer to the individual ALU instruction definitions for their exact effect on flags. The flags are valid in
the clock cycle after an arithmetic unit instruction.

Multiply Unit (MUL)
The multiplier can perform two fundamental operations.

1. 32x32 signed multiply, with a sign extended 32-bit result extracted by an appropriate arithmetic
shift,

2. Four independent 16x16 signed multiplies, with four 32-bit results with a limited range of shift
options.

All multiplies are signed.

The shift operation necessary to extract these results is controlled by either the acshift and svshift
registers, or by the operands of the mul, mul_sv , mul_p and dotp instructions.

All multiply operations take two clock cycles to complete. However, you cannot rely on the destination
register containing the old value in the clock cycle which follows the multiply instruction.

PAGE 22 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Arithmetic Operations
The MUL unit can also be used as a simple ALU with a limited range of functions. It can do scalar
addition and subtraction. These may be used to augment the main ALU in functions that are limited by
the ALU.

The addm and subm MUL unit arithmetic operations complete in one clock cycle, and may therefore
not be used in the clock cycle after a mul, mul_sv , mul_p or dotp.

MUL Instruction set summary
Mnemonic Description
mul Multiply two (32-bit) scalars
mul_p Multiply all elements of a pixel
mul_sv Multiply all elements of a small vector
dotp Multiply all elements of a small vector, and produce their sum
addm Arithmetic addition using the MUL unit
subm Arithmetic subtraction using the MUL unit

Small Vector Shifts
Small vector or pixel multiply results are shifted by one of four values. To understand the shift amounts,
you have to understand what the hardware does. For a small vector or pixel multiply, or a dot product,
the data flow through the multiplier is something like this:

16

32

32

16

16 x 16 multiplier

Scalar source values

Shifter

Scalar target register

The shifter actually performs one of four shift left amounts. However, the programmer’s view of these
shifts is a shift right, because when the shifter shifts by zero, you can see that there is an effective shift
right of 16 through this arrangement, because the top 16 bits of the source values are used.

Shift values are therefore encoded like this:

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 23

svshift
value

Hardware shifts by Effective
shift right

Small vector product definition

0

<< 16

32 bit product

$000016 product LSBs

0 for the product of 16.0 values as a 16.0
small vector value

1

<< 8

32 bit product

$0024 product LSBs

8 for the product of 8.8 values as an 8.8
small vector value (8.16 is actually
written)

2

<< 0

32 bit product

all product bits

16 for the full 32-bit product

3

<< 2

32 bit product

%0030 product LSBs

14 for the product of 2.14 values as a 2.14
small vector value (2.28 is actually
written)

Execution Control Unit (ECU)

Overview
The ECU is responsible for controlling the program counter and execution pipeline. By default, the ECU
will advance the program counter after every instruction packet to the start of the next packet, while
monitoring exception and interrupt conditions. In addition, a number of instructions are available which
directly control the ECU.

ECU instructions execute in parallel with all the other function units. For example, an RTS instruction
may coexist with a POP instruction from the memory unit.

A register port is shared by the ALU, for 3 register operand instructions; by the RCU, for addr
instruction with a register operand; and by the ECU for jmp instructions with the jump address held in a
register. Only one of these instruction forms may be present in any instruction packet.

ECU Instruction set summary
Mnemonic Description
bra branch conditionally; target address is a relative offset to the current instruction packet address
jmp jump conditionally; target address is an absolute value
jsr jump conditionally to subroutine; target address is an absolute value
rts jump conditionally to absolute address in register rz

PAGE 24 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Branch optimization
The two instruction packets following any ECU instruction are usually executed whether the instruction
flow is changed or not. These two instruction packets are known as the delay slots. After the delay slots,
execution either continues or branches to a new address.

The only exception to this rule is a special form of the jump instruction with a nop operand. When a
jump instruction has a nop operand, the processor is idle in the two clock cycles that follow if the jump
is taken (these are known as dead cycles); if it is not taken then execution always continues normally.
These dead cycles form may be used to save code space if there is no useful function which can be
performed when the jump is taken.

ECU instructions may follow each other in successive instruction packets. If the first one causes the
program counter to change, i.e. the bra, jmp or rts is taken, then any ECU instructions in the two
instruction packets that follow it will be ignored. If the first ECU instruction is not taken, then an ECU
instruction that follows it will be evaluated normally. ECU instructions may follow each other
repeatedly in this manner.

Relative branches are calculated from the address of the instruction packet which follows the packet
containing the branch instruction.

The register rz is used for sub-routine calls. The jsr instruction copies the correct return address to rz
register. This is correct both for normal branches, where it is the address of the packet of instructions
three packets on from the current one, that is after the delay slot packets; and for the special jsr form
with implied nop, when it is the address of the packet that follows the current one.

The implied nop form is therefore more efficient if the branch is not taken, because execution continues
immediately with code for that path, and it may be useful when the branch is not normally taken to use
this form when the delay slot cannot be filled.

Condition codes
Condition code flags are generally set at the end of the current instruction, and remain valid until
updated. The point at which the flag may be tested varies with the type, as follows:

1. The ALU condition codes may be tested by a branch instruction in the cycle after they are generated,
i.e. at the same time that the ALU result may be used.

2. The multiplier mv flag may be tested two cycles after the multiplier instruction, again at the same
time that the result is valid. In the cycle in between the flag state is not defined.

3. The counter flags, c0z and c1z may be tested by a branch instruction in the cycle after they are
decremented.

The following condition code flags are defined:

Flag Name Description
z ALU Zero Set if the result of a scalar ALU operation is zero
c ALU Carry / Borrow Set if there is a carry from an addition or a borrow from a subtraction.
n ALU Negative Set if bit 31 of a scalar ALU operation is set
v ALU Overflow Set if there is an overflow from a scalar ALU operation
mv MUL Overflow Set if any significant bits are lost as a result of the shift in a scalar multiply

instruction
c0z Counter rc0 zero Set if counter register rc0 is zero
c1z Counter rc1 zero Set if counter register rc1 is zero

modge RCU range high Set if a modulo or range instruction found the value greater than or equal to

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 25

Flag Name Description
the range specified.

modmi RCU range low Set if a modulo or range instruction found the value less than zero.
cf0 Coprocessor 0 Used for expansion hardware
cf1 Coprocessor 1 Used for expansion hardware

Note that there are no flags for the rx, ry, ru, and rv registers. There is also no overflow detection for
the small vector accumulator multiplies. There are no flags for pixels, vectors or small vectors.

Branch instructions can test combinations of these flags. A full list of available tests is given below.

Mnemonic Condition Test
ne Not equal /z
eq Equal z
lt Less than (n./v) + (/n.v)
le Less than or equal z + (n./v) + (/n.v)
gt Greater than (n.v./z) + (/n./v./z)
ge Greater than or equal (n.v) + (/n./v)
c0ne rc0 not equal to zero /c0z
c1ne rc1 not equal to zero /c1z
c0eq rc0 equal to zero c0z
c1eq rc1 equal to zero c1z
cc (hs) Carry clear (High or same) /c
cs (lo) Carry set (Low) c
vc Overflow clear /v
vs Overflow set v
mvc Multiply overflow clear /mv
mvs Multiply overflow set mv
hi High /c./z
ls Low or same c + z
pl Plus /n
mi Minus n
t True 1
modmi modulo RI was < zero modmi
modpl modulo RI was >= zero /modmi
modge modulo RI was >= range modge
modlt modulo RI was < range /modge
cf0lo Coprocessor flag 0 low /cf0
cf0hi Coprocessor flag 0 high cf0
cf1lo Coprocessor flag 1 low /cf1
cf1hi Coprocessor flag 1 high cf1

Note that the 16-bit form of the branch instruction can only use the first eight conditions from the
condition code table (ne, eq, lt, le, gt, ge, c0ne, c1ne).

Subroutines and Interrupts
The MPE has some very simple instructions and registers to assist subroutine calling. The guiding
philosophy for subroutines has been to make calls and returns extremely fast, and to efficiently reduce
overall code size.

PAGE 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Interrupts must be responded to within certain maximum time limits in a real-time system. Therefore the
interrupt philosophy is low-latency, and fast return.

The inventory of instructions (not all of which are ECU instructions) for subroutines and interrupts
includes:

Instruction Description
push ... Pushes a vector register (128 bits) on a stack in data RAM. Special forms save rz and other

hardware state. sp is pre-decremented.
pop ... Pops a vector register from the stack, the reverse of push. sp is post-incremented.
jsr ... Copy the address of the first un-executed instruction packet into the special register rz and

transfer control to the specified address
rts cc Conditionally jump to register rz indirect.
rti cc Conditionally return from interrupt by using the rzi registers to restore the fetch pipe-line.

Subroutines
Simple sub-routine calling may be performed by the jsr instruction. The two following instruction
packets in the two delay slots will be executed unless the special implied nop form of jsr is used, and
then control will be transferred to the subroutine. At the end of the subroutine the rts instruction returns
control to the calling code, once again after executing the instruction packets in the delay slots after it.

jsr subroutine ; transfer control and set up rz
nop ; delay slot 1
nop ; delay slot 2

; instruction flow will return here
. . .
subroutine:
. . .
rts

nop ; delay slot 1
nop ; delay slot 2

If recursion to further levels of sub-routine call is required, then the rz register will need to be preserved
with the appropriate form of push before re-using it to call a subroutine at a deeper level.

Interrupts
Interrupts will cause a transfer of execution control to the interrupt service routine at the earliest possible
moment. The interrupt service routine address is defined by one of two intvec registers, and is a location
in physical memory.

Two level of interrupt are generated, level 1 which is used for the majority of interrupt servicing, and
level 2 which allows one interrupt source to be selected as a higher priority interrupt. A level 2 interrupt
can interrupt the interrupt service routine of a level 1 interrupt.

When an interrupt is recognized, the execution control unit performs an implied branch to the interrupt
service routine address, and copies program address return information to the appropriate interrupt
registers rzi1 or rzi2.

On entry to the interrupt service routine, all interrupts at that level are masked by corresponding the
imaskHw hardware interrupt mask bit, which is set when the interrupt is recognized. It is cleared again
by the rti return from interrupt, and may be left set throughout the interrupt service routine if desired.

If software masking of interrupts is required, the appropriate imaskSw bit may be set to mask all
interrupts.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 27

Individual interrupt sources may be independently enabled in the MPE interrupt control register, by
setting the appropriate interrupt enable bits. When an interrupt occurs, this register gives the source of
the interrupt, and can be used to clear the interrupt hardware.

A non-masked interrupt to the MPE effectively causes a forced branch to the interrupt handler located at
the intvec address stored in the interrupt vector register. As with a normal branch, there are 2 “delay
slots” before the first instruction of the interrupt routine actually arrives in the MPE execute stage.

How Interrupts work
When a level-1 interrupt is true, enabled, and not masked, the ECU saves pcroute into rzi1, sets
imaskHw1 high, forces a jump to intvec1, and kills the execution of the packets that were in the route
and fetch stages of the pipeline. When a level-2 interrupt is true, enabled, and not masked, the ECU
saves pcroute into rzi2, sets imaskHw2 high, forces a jump to intvec2, and kills the execution of the
packets that were in the route and fetch stages of the pipeline.

Both level-1 and level-2 interrupts are temporarily blocked during the execution of any “taken-jump”
instruction and its first delay slot. This includes taken bra, jmp, jts, rts, and rti instructions, as well as
the “interrupt-jumps” themselves. If both level-1 and level-2 interrupts are true, enabled, and not
masked, then the level-1 interrupt is temporarily blocked while the level-2 interrupt jump is taken.

Assuming the MPE is not already handling a level-2 interrupt, there is a maximum latency of 5 ticks
from the time a level-2 interrupt is captured until the MPE is executing the first instruction packet of the
level-2 interrupt service routine (ignoring stalls caused by DMA). Like any other ECU jump, the
interrupt-jump itself takes 3 ticks, and before the interrupt-jump starts, there may be up to 2 ticks in
which the level-2 interrupt is being automatically blocked if the ECU is executing a taken-jump.

Software must handle the “clearing” of pulse-style interrupt sources differently from level-style interrupt
sources in order to guarantee no lost or spurious interrupts. For pulse-style interrupts, first the local
MPE IntSrc register bit is cleared, and then the source logic can be informed that the last interrupt has
been handled and another may now be issued. For level-style interrupts, first the source logic is
informed that the interrupt has been handled so that it can remove its interrupt (or keep it asserted if it
has another interrupt), and then the local MPE IntSrc register bit can be cleared (which will have no
effect if the source logic kept the interrupt asserted).

Register Control Unit (RCU)
The register unit (RCU) is responsible for control of the special purpose registers rx, ry, ru, rv, rz, rc0
and rc1.

Registers rx, ry, ru, and rv are used for bilinear (pixel) address generation, and are normally used as
16.16 fixed point fractions. The ADDR instruction allows a scalar or an immediate integer value to be
added to one of these registers.

A register port is shared by the ALU, for 3 register operand instructions; by the RCU, for addr
instruction with a register operand; and by the ECU for jmp instructions with the jump address held in a
register. Only one of these instruction forms may be present in any instruction packet.

The register unit is responsible for copying the program counter into the register rz.

Registers rc0 and rc1 are 12-bit programmable down-counters, which stop on zero. The instructions that
decrement these are not in fact actual instructions, but are actually encoded as a bit-field in any other
RCU instruction, and therefore one or both counters may be decremented in parallel with any other RCU

PAGE 28 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

instruction. The addr #0,ri form is used as an RCU null operation when only decrement instructions are
encoded.

RCU Instruction set summary
Mnemonic Description
dec Decrement rc0 or rc1 register, unless it is zero
addr Add to index register
modulo Range limit index register
range Range check index register

Memory Unit (MEM)
The memory unit is responsible for data transfers between internal MPE registers and data memory.
These include loads and stores of scalars, small vectors, vectors and pixels. It also supports vector stack
operations. By utilizing the same data paths, the memory unit also supports register-to-register transfers.

The memory unit is supplemented by a programmable DMA engine. The DMA engine provides the only
way that MPEs can access external memory. Since external bus(???) bandwidth is a precious
commodity, the programmer needs to understand the memory unit and DMA function in some detail, in
order to be able to configure it effectively for each algorithm.

MEM Instruction set summary
Mnemonic Description
ld_b Load Byte
ld_w Load word
ld_p Load Pixel
ld_s Load Scalar
ld_sv Load Small vector
ld_v Load Vector
mirror Reverse the bit order of a scalar
mv_s Move Scalar
mv_v Move Vector
pop Pop data from stack
push Push data on to stack
st_p Store Pixel
st_s Store Scalar
st_sv Store Small vector
st_v Store Vector

The move instructions provide a convenient way to transfer data between internal registers.

The remaining load and store instructions provide a variety of addressing modes and data paths for
transferring data between registers and memory.

Data can be loaded from memory in a wide variety of forms, including 4, 8, 16, 32, 64 and 128-bit
quantities. Memory is physically organized as 32-bit wide RAMs, therefore it is only possible to store in
multiples of 32-bit words.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 29

Several addressing modes are available, which can be split into two categories: linear addressing and
bilinear addressing. Various forms of linear addressing are available for loading and storing scalars,
vectors and small vectors. Please refer to the instruction reference for details of which modes are
available to which instructions. Examples are:
ld_s (Si),Sj Indirect. Load from address Si, to register Sj
ld_s (#nn),Sj Absolute. Load from address #nn in local data RAM or

local data ROM
ld_s (xy / uv),Sj Bilinear indirect. Form an address from the xy or uv

pair, along with their associated base and flags.

The scalar registers r0-r31, when used as indirect address pointer, are considered unsigned 32.0 format,
i.e. whole numbers of bytes. All addressing forms can only reference internal data RAM or data ROM.

Stack Operations
Stack operations always push or pop 16 bytes of data. This can be a vector register or a specified set of
the special purpose registers. The stack pointer is a special purpose register which always points at a 16-
byte boundary in RAM. The stack grows down through memory, so a push operation pre-decrements the
stack pointer, and a pop operation post-increments it.

Accessing Mpe Control Registers
Since most of the MPE Control Registers are scalars on vector-aligned addresses, they are normally
accessed with the direct-absolute-addressing forms of the ld_s and st_s instructions. The commrecv
and commxmit registers are exceptions since they are each made up of 4 scalars on successive scalar
addresses, and they may be accessed as vectors with the ld_v and st_v instructions. (Access to the
Control Registers may also be done with indirect addressing modes, but this normally isn’t very useful.)

The table below shows the restrictions on address values and immediate values for the different
instruction forms used to access MPE Control Registers. (The set of restrictions is a bit odd, but that’s
the price we pay for instruction compression and getting the most out of the bits available at each
instruction length.) Source code normally specifies st_s or ld_s along with the Control Register name
and the register file register or immediate value, and leaves the assembler to choose the shortest
instruction form that can handle the operands.

Length Instruction Operand size Address Range in CTL REG Space
(Alignment)

*(16) ld_s (#base,#offset),Sk offset[8:4] $2050_0000:$2050_01F0
(Vector-aligned)

*(16) st_s Sj,(#base,#offset) offset[8:4] $2050_0000:$2050_01F0
(Vector-aligned)

@(32) ld_s (#base,#offset),Sk offset[12:2] $2050_0000:$2050_1FFC
(Scalar-aligned)

@(32) st_s Sj,(#base,#offset) offset[12:2] $2050_0000:$2050_1FFC
(Scalar-aligned)

@(32) ld_v (#base,#offset),Vk offset[14:4] $2050_0000:$2050_7FF0
(Vector-aligned)

@(32) st_v Vj,(#base,#offset) offset[14:4] $2050_0000:$2050_7FF0
(Vector-aligned)

*(32) st_s #immu,(#base,#offset) offset[12:4]
immu[9:0]

$2050_0000:$2050_1FF0
(Vector-aligned)

@(64) st_s #immu,(#base,#offset) offset[13:2]
immu[31:0]

$2050_0000:$2050_3FFC
(Scalar-aligned)

PAGE 30 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

@ means the 2-bit base value is encoded in the instruction as one of:

00 DTROM $2000_0000
01 DTRAM $2010_0000
10 CTLREG $2050_0000
01 reserved

* means the base value is implicitly:

 10 CTLREG $2050_0000

immu[9:0] is zero-filled to the left to create a scalar.

Bilinear addressing
Bilinear addressing is only available to the load and store instructions that transfer pixel, scalar, and
small vector data. It is normally used for pixel input data such as texture maps, and rendered pixel
output, but may find uses in other one or two dimensional structures as well. This is an example of a
bilinear load instruction:
ld_p (xy),Vi Bilinear indexed load from address formed by the xy pair

Two bilinear register pairs are available – rx and ry, which are referred to as (xy) when used as an
operand; and ru and rv, which are referred to as (uv). Each pair has an associated set of IO registers
which define the structure it is referencing. To reference a new data structure, these IO registers will
need to be modified.

The index register pairs are normally used in unsigned 16.16 format. When a register pair is used to
reference corresponding bit-maps at different resolutions (normally for MIP-mapping), then the position
of the binary point may be changed via the ##_MIPMAP register.

The fractional part of the register will be truncated for address generation, and the upper bits of the
integer part may be masked to support low overhead 2n modular arithmetic (see the TILE values below).

The target address for (xy) addressed loads and stores is formed by the following formula.

xXY_BASE+
+((X>>XY_MIPMAP)&(XTILEMASK>>XY_MIPMAP))

((Y>>XY_MIPMAP)&(YTILEMASK>>XY_MIPMAP))x(width>>XY_MIPMAP)pixel width
of

XY_TYPE

Normal or bit-reverse X/Y or U/V

XTILEMASK is the mask produced by taking the value $FFFF0000 << (16-x_tile). The right
shift performed on it by mipmap is an arithmetic shift. YTILEMASK is calculated similarly.

X and Y are the integer parts (16 MSBs) of rx and ry.
The other values used in this calculation are defined below.

The bilinear store instruction looks like this (xy is used as an example, and may be replaced by uv):
st_p Vi,(xy) Bilinear Indexed. Store to address formed by the xy pair

Store instructions are subject to the limitation that only 32 and 64 bit pixel types can be stored.

The control values for bilinear addressing are as follows:

Register
Label

Width
in bits

Description

x_rev 1 If this bit is set, the integer part of rx / ru is mirrored prior to address generation. See

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 31

Register
Label

Width
in bits

Description

u_rev below.
y_rev
v_rev

1 If this bit is set, the integer part of ry / rv is mirrored prior to address generation. See
below.

xy_chnorm
uv_chnorm

1 If set, 128 is subtracted from chrominance fields during ld_p and 128 is added to
chrominance fields during st_p when this bilinear pair is used. Sign extension is
performed on the ld_p operation.

xy_type
uv_type

3 Defines the data type in internal RAM. Only Pixel data types 1-6 and Small Vector
are legal in this field. Some modes are illegal for store pixel. Refer to the MPE Data
Types section.
Type Mapping Bits Note
0 MPEG pixel 24 see notes on storage format
1 Pixel data type 1 4 for CLUT lookup
2 Pixel data type 2 16
3 Pixel data type 3 8 for CLUT lookup
4 Pixel data type 4 32
5 Pixel data type 5 32
6 Pixel data type 6 64
8 Byte 8 not valid as a pixel load/store type
9 Word 16 not valid as a pixel load/store type
A Scalar 32 not valid as a pixel load/store type
C Small vector 64 not valid as a pixel load/store type
D Vector 128 not valid as a pixel load/store type

x_tile
u_tile

4 Defines a mask of the upper n bits of the register value before it is used in the address
calculation. The most significant x_tile or y_tile bits of the register value are forced to
zero, primarily to allow tiling of texture maps. For example, a value of 0 does not
mask any bits, and a value of 15 masks Bit 31 to Bit 17.

y_tile
v_tile

4 Defines a mask of the upper n bits of the register value before it is used in the address
calculation. The most significant y_tile or v_tile bits of the register value are forced to
zero, primarily to allow tiling of texture maps. For example, a value of 0 does not
mask any bits, and a value of 15 masks Bit 31 to Bit 17.

xy_width
uv_width

11 The width of the two-dimensional structure, measured in pixels. Legal values are 0, 1,
2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024. A value of zero means that the Y index
register is not used as part of the address (it is multiplied by zero, effectively).

xy_mipmap
uv_mipmap

3 Defines the position of the binary point, relative to 16.16. This is necessary for MIP
Mapping. The position of the binary point is considered to be 16+(##_MIPMAP) by
the Memory Unit address generator and the mul_sv and mul_p instructions. Valid
values are 0-4.

xybase
uvbase

30 The memory base address of the top left pixel of the entire image. It must be on a
scalar boundary.

rx
ru

32 32-bit X index register. The X part of the address is formed from the integer part of rx
or ru, where the binary point can be moved left from 0-4 positions by the
##_MIPMAP value.

ry
rv

32 32-bit Y index register. The Y part of the address is formed from the integer part of ry
or rv, where the binary point can be moved left from 0-4 positions by the
##_MIPMAP value.

The IO address and bit-field assignments for these are shown in the MPE IO memory map section of this
document.

PAGE 32 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Range Limiting Index Registers
The range registers allow the index register rx, ry, ru and rv to have a maximum range defined for
them. The modulo instruction will take one of the index registers, and if it is greater than corresponding
range value will subtract the range; and if less then zero will add the range. If it is out of range by more
than the range value, this operation will not work correctly. The range instruction performs the same
comparison, but only sets the flags.

Register
Label

Width
in bits

Description

xrange
urange

10 Gives the range of rx / ru for the modulo and range instructions.

yrange
vrange

10 Gives the range of ry / rv for the modulo and range instructions.

FFT Address Generation
The xy_xrev and uv_xrev flags are useful for FFT address generation. It reverses the bit order of the
integer part of rx / ru before it is used. This means that the system can support a 2n sized buffer for FFT
operations, with the same effect as the 56000 “reverse carry propagation” in the address. This simplified
diagram shows the effect.

Base addressFractionInteger

Mirrored indexed address generationNormal indexed address generation

Adder

Base addressFractionInteger

Adder

Note that this means that the integer bits used start from the MSB of rx / ru. An increment value of one
will require suitable left shifting. For example, for a 27 = 128 sized buffer, the (16-7) = 9 low integer bits
are not used, so to add one it should be shifted left 9.

Linear Indexed Addressing
It is quite feasible to use the bilinear addressing form as a linear indexed addressing form, although the
index will be limited to 64K data elements. The bilinear address form can be used with load and store
scalar, and with load and store small vector. For scalar loads and stores, the ##_type field should be set
to type 5; for small vector loads and stores it should be set as shown in the table above.

Normally ry will be set to zero in this mode, so the width field is not important.
Either the x_tile / y_tile / y_tile / v_tile field or the modulo operation can be used to implement circular
buffers. The x_tile / y_tile / y_tile / v_tile mechanism is the simplest mechanism; it forces addresses to
wrap within a 2n area. The modulo operation gives more flexibility to the circular buffer size, at the cost
of greater program overhead.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 33

Pixel Data Types
Scalars and vectors are stored in MPE data memory as they are in registers. Scalars in data memory have
to be on a long boundary, vectors in data memory have to be on a vector boundary. These can be
transferred by linear DMA between MPE data RAM and external DRAM, or between MPEs. Linear
DMA is always performed in long-words on long-word boundaries, so the only alignment restriction on
vectors in DRAM is to be on long boundaries.

Load pixel operations only affect the first three elements of the target vector. Load small-vector
operations affect all four elements. Otherwise their operations are identical, and the actual data type
referenced in MPE data RAM is given by the appropriate type field.

The MPE MEM Unit supports a number of data types for loads from Memory into the RegFile, and for
stores from the RegFile to Memory. There are different forms of load and store for dealing with the
different data types: byte, word, scalar, small-vector, vector, and 7 different pixel types. The supported
transfers are summarized in the table below, followed by a brief description of the data transformations
performed for each pixel type.

The data type number is used in the xyctl and uvctl registers to specify the xy_type and uv_type for
bilinear addressing. It is also used in the linpixctl register to specify the linpix_type for linear
addressing with st_p, st_pz, ld_p, and ld_pz.

Data Type
 # Name

Store Data Size
To Memory

Store
Form

Load
Form

Load Data Size
Into Register File

0 pixel MPEG 16 bits NA
NA

ld_p
ld_pz

¾ vector
vector

1 pixel 4 bits NA
NA

ld_p
ld_pz

¾ vector
vector

2 pixel 16 bits NA
NA

ld_p
ld_pz

¾ vector
vector

3 pixel 8 bits NA
NA

ld_p
ld_pz

¾ vector
vector

4 pixel 24+8 bits st_p
st_pz

ld_p
ld_pz

¾ vector
vector

5 pixel 16+16 bits st_p
st_pz

ld_p
ld_pz

¾ vector
vector

6 pixel 24+8+32 bits st_p
st_pz

ld_p
ld_pz

¾ vector
vector

7 reserved
8 byte 8 bits NA ld_b scalar (msb aligned)

(byte,24’b0)
9 word 16 bits NA ld_w scalar (msb aligned)

(word,16’b0)
A scalar 32 bits st_s ld_s scalar
B reserved
C small-

vector
64 bits st_sv ld_sv sm-vector (msb aligned)

(word,16’b0,word,16’0,
word,16’b0,word,16’b0)

D vector 128 bits st_v ld_v vector
E reserved
F reserved

PAGE 34 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Data Type 0 – MPEG pixels

The format for this pixel type is derived from the format used to store decoded MPEG video, and is
meant to allow efficient use of MPEG video as a texture. The main-bus DMA is used to move the data
from external SDRAM into local MPE DTRAM. This is accomplished by at least two separate DMA
operations, one for the luma data and one for the chroma data. Details of these DMA operations are
described in the Main Bus section. Once the DMA transfers are complete, the layout of the Type 0 pixel
data within a DTRAM vector is pictured here.

Long Word offset 0 1

Byte offset 0 1 2 3 4 5 6 7

Bit address 127-120 119-112 111-104 103-96 95-88 87-80 79-72 71-64

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

Long Word offset 2 3

Byte offset 8 9 A B C D E F

Bit address 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

CR0 CR1 CR2 CR3 CB0 CB1 CB2 CB3

The upper bits of the address formed by a ld_p or ld_pz instruction are used to access the vector
pictured above, and then bits [3:1] are used to select one of the following 8 pixels:
Y0,CR0,CB0
Y1,CR0,CB0
Y2,CR1,CB1
Y3,CR1,CB1
Y4,CR2,CB2
Y5,CR2,CB2
Y6,CR3,CB3
Y7,CR3,CB3

The load pixel instruction will map a type 0 pixel into a vector register as follows:
Bits 31-30 29-22 21-16 15-0

Register Vn[0] - Y 0 Yx 0 0

Register Vn[1] - Cr SS CRy 0 0

Register Vn[2] - Cb SS CBy 0 0

Register Vn[3] left unchanged

The load and store pixel with Z (ld_pz and st_pz) instructions will map a type 0 pixel into a vector
register as follows:

Bits 31-30 29-22 21-16 15-0

Register Vn[0] - Y 0 Yx 0 0

Register Vn[1] - Cr SS CRy 0 0

Register Vn[2] - Cb SS CBy 0 0

Register Vn[3] - control 0

For loads, if the appropriate chnorm bit is set, then 128 is subtracted from the values placed in Vn[1]
and Vn[2]. Since these are assumed to be signed 2.14 numbers, the value %100000 00000000 is actually
subtracted from bits 29-16. When this is done, sign extension is performed into bits 30-31 (SS in the
table above).

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 35

Data Type 1 – 4 bit pixels

Type 1 pixels are four bits. The value represents an index into an arbitrary look-up table, and so it has no
fixed relationship with the physical appearance. These are sometimes useful for memory efficient
texture maps, and can be used for very memory efficient display buffers. They can be used by load pixel
instructions, but may not be directly stored.

Type 1 pixels are always stored together in groups of four in a 16-bit word. This represents a horizontal
strip of four pixels. All DMA operations on type 1 pixels must be defined with their X position and
length as multiples of four pixels.

Byte address 0 1

Bit address 15-8 7-0

0 1 2 3

The load pixel instruction will load a 4-bit pixel into a vector register as follows:
Bits 31-6 5-2 1-0

Register Vn[0] CLUTBASE(31:6) P[3:0] 0

Register Vn[1] 0 0 0

Register Vn[2] 0 0 0

Register Vn[3] left unchanged

Note that the lowest element of the vector Vn[0] is set up ready for a subsequent indexing operation by
inserting the CLUTBASE base address of a color lookup table, which must be 64-byte aligned.
Typically, Pixel Map type 1 pixel reading code will look something like this:

ld_p (uv),v1 load 4 bit texture value, in a form
which can be used for table lookup

nop allow the load to complete
ld_p (R4),v1 load indexed value from CLUT. CLUT is

sixteen 32-bit packed elements.
linpix_type must be data type 4.

Data Type 2 – 16 bit pixels
Type 2 pixels are 16 bits per pixel. They represent a physical color, thus:

49 510 015

CbCrY

When these pixels are used for display generation zeroes are added in the least significant positions to
increase them to 8 bits per field.

They can be used by load pixel instructions, but may not be stored. However, type 4 pixels in MPE
RAM may be converted to type 2 in DRAM by DMA transfer.

Byte address 0 1

Bit address 15-8 7-0

 P[15:0]

The load pixel instruction will load a 16-bit pixel into a vector register as follows:
Bits 31-30 29-25 24 23-16 15-0

PAGE 36 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Register Vn[0] - Y 0 P[15:11] P[10] 0 0

Register Vn[1] - Cr SS P[9:5] 0 0 0

Register Vn[2] - Cb SS P[4:0] 0 0 0

Register Vn[3] left unchanged

For loads, if the appropriate chnorm bit is set, then 128 is subtracted from the values placed in Vn[1]
and Vn[2]. Since these are assumed to be signed 2.14 numbers, the value %100000 00000000 is actually
subtracted from bits 29-16. When this is done, sign extension is performed into bits 30-31 (SS in the
table above).

For stores, the pixel value is saturated from the 2.14 bit representation in the small vector, so that the Y
value lies in the range 0-1 ($00 to $FF), and so the Cr and Cb values lie in the range -½ to +½ ($80 to
$7F). If the chnorm bit is set then 128 is added to the saturated chrominance values before storing them.

Data Type 3 – 8 bit pixels
Type 3 pixels are eight bits. The value represents an index into an arbitrary look-up table, and so it has
no fixed relationship with the physical appearance. These are sometimes useful for memory efficient
texture maps, and can be used for very memory efficient display buffers. They can be used by load pixel
instructions, but may not be directly stored.

Type 3 pixels are always stored together in groups of two in a 16-bit word. This represents a horizontal
strip of two pixels. All DMA operations on type 3 pixels must be defined with their X position and
length as multiples of two pixels.

Byte address 0 1

Bit address 15-8 7-0

1 2

The load pixel instruction will load an 8-bit pixel into a vector register as follows:
Bits 31-10 9-2 1-0

Register Vn[0] CLUTBASE(31:10) P[7:0] 0

Register Vn[1] 0 0 0

Register Vn[2] 0 0 0

Register Vn[3] left unchanged

Note that the lowest element of the vector Vn[0] is set up ready for a subsequent indexing operation by
inserting the CLUTBASE base address of a color lookup table, which must be 1024-byte aligned.
Typically, Pixel Map type 3 pixel reading code will look something like this:

ld_p (uv),v1 load 4 bit texture value, in a form
which can be used for table lookup

nop allow the load to complete
ld_p (r4),v1 load indexed value from CLUT. CLUT is

256 32-bit packed elements. linpix_type
must be data type 4.

Data type 4 – 32-bit pixels
Type 4 pixels are 32 bits per pixel. They represent a physical color, thus:

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 37

15 723 1624 8 031

controlCbCrY

They can be used by load and store pixel instructions, and can be present in DRAM and in MPE RAM.

The load pixel instruction will map a 32-bit element P[31:0] into a vector register as follows:
Bits 31-30 29-22 21-16 15-0

Register Vn[0] - Y 0 P[31:24] 0 0

Register Vn[1] - Cr SS P[23:16] 0 0

Register Vn[2] - Cb SS P[15:8] 0 0

Register Vn[3] left unchanged

The load and store pixel with Z (ld_pz and st_pz) instructions will map a 32-bit element P[31:0] into a
vector register as follows:

Bits 31-30 29-22 21-16 15-0

Register Vn[0] - Y 0 P[31:24] 0 0

Register Vn[1] - Cr SS P[23:16] 0 0

Register Vn[2] - Cb SS P[15:8] 0 0

Register Vn[3] - control P[7:0] + 00 0 0

For loads, if the appropriate chnorm bit is set, then 128 is subtracted from the values placed in Vn[1]
and Vn[2]. Since these are assumed to be signed 2.14 numbers, the value %100000 00000000 is actually
subtracted from bits 29-16. When this is done, sign extension is performed into bits 30-31 (SS in the
table above).

For stores, the pixel value is saturated from the 2.14 bit representation in the small vector, so that the Y
value lies in the range 0-1 ($00 to $FF), and so the Cr and Cb values lie in the range -½ to +½ ($80 to
$7F). If the chnorm bit is set then 128 is added to the saturated chrominance values before storing them.

Data type 5 – 16 bit pixels with 16 bit Z
Type 5 pixels are 16 bits per pixel, with an associated 16-bit control value, usually used for a Z-buffer
depth. The 16 pixel bits represent a physical color, thus:

01531 16

Z
2025 2126

CbCrY

When these pixels are used for display generation zeroes are added in the least significant positions to
increase them to 8 bits per field.

They can be used by load and store pixel and small vector instructions. Type 5 pixels in MPE RAM can
be converted to types 7-B by DMA transfer to DRAM, or can be transferred directly.

The load pixel instruction will map a type 5 element to a vector register as follows:
Bits 31-30 29-25 24 23-16 15-0

Register Vn[0] - Y P[15:11] P[10] 0 0

Register Vn[1] - Cr SS P[9:5] 0 0 0

Register Vn[2] - Cb SS P[4:0] 0 0 0

Register Vn[3] - Z left unchanged

PAGE 38 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

The load and store pixel with Z (ld_pz and st_pz) instructions will map a type 5 element to a vector
register as follows:

Bits 31-30 29-25 24 23-16 15-0

Register Vn[0] - Y P[15:11] P[10] 0 0

Register Vn[1] - Cr SS P[9:5] 0 0 0

Register Vn[2] - Cb SS P[4:0] 0 0 0

Register Vn[3] - Z Z[15:0] 0

For loads, if the appropriate chnorm bit is set, then 128 is subtracted from the values placed in Vn[1]
and Vn[2]. Since these are assumed to be signed 2.14 numbers, the value %100000 00000000 is actually
subtracted from bits 29-16. When this is done, sign extension is performed into bits 30-31 (SS in the
table above).

For stores, the pixel value is saturated from the 2.14 bit representation in the small vector, so that the Y
value lies in the range 0-1 ($00 to $FF), and so the Cr and Cb values lie in the range -½ to +½ ($80 to
$7F). If the chnorm bit is set then 128 is added to the saturated chrominance values before storing them.

Data Type 6 – 32-bit pixels with 32-bit Z

Type 6 pixels are 32 bits per pixel, with an associated 32-bit control value, usually used for a Z-buffer
depth. They represent a physical color, thus:

3263 47 3955 4856 40 031

unusedCbCrY Z

They can be used by load and store pixel and small vector instructions, and can be present in DRAM and
in MPE RAM.

The load pixel instruction will store to a type 6 element from a pixel register as follows:
Bits 31-30 29-22 21-0

Register Vn[0] - Y 0 P[31:24] 0

Register Vn[1] - Cr SS P[23:16] 0

Register Vn[2] - Cb SS P[15:8] 0

Register Vn[3] - Z left unchanged

The load and store pixel with Z (ld_pz and st_pz) instructions will map a type 6 element to a vector
register as follows:

Bits 31-30 29-22 21-0

Register Vn[0] - Y 0 P[31:24] 0

Register Vn[1] - Cr SS P[23:16] 0

Register Vn[2] - Cb SS P[15:8] 0

Register Vn[3] - Z Z[31:0]

For loads, if the appropriate chnorm bit is set, then 128 is subtracted from the values placed in Vn[1]
and Vn[2]. Since these are assumed to be signed 2.14 numbers, the value %100000 00000000 is actually
subtracted from bits 29-16. When this is done, sign extension is performed into bits 30-31 (SS in the
table above).

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 39

For stores, the pixel value is saturated from the 2.14 bit representation in the small vector, so that the Y
value lies in the range 0-1 ($00 to $FF), and so the Cr and Cb values lie in the range -½ to +½ ($80 to
$7F). If the chnorm bit is set then 128 is added to the saturated chrominance values before storing them.

PAGE 40 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

MPE REGISTER SET REFERENCE

This section defines the MPE’s internal registers. Bits not defined here are reserved. Reserved bits may
read as 0 or 1 (undefined), and should always be written as 0. However, it is permissible to write back
unmodified any value read from a read / write register. These registers are accessed with the normal load
and store scalar instructions, except the Comm Bus receive and transmit registers, which may also be
accessed with the load and store vector instructions.

mpectl MPE Control Register
Address: $2050_0000
Read / Write

This register controls the basic operation of the MPE processor. It is modified by writing a
pattern to it with the appropriate set or clear bits set to one, and all other bits zero. This allows
atomic modifications, so that read-modify-write operations are normally unnecessary.

Bit “Write” value “Read” value Description
31-28 (reserved) (reserved)
27-24 cycleType cycleType Internal state for use by the debugger only.

23 cycleType_wren 0 This bit must be set for the cycleType bits to be
written. Writing a zero has no effect.

22-16 (reserved) (reserved)
15 (reserved) mpeWasReset This bit will be set whenever the MPE comes out

of reset.
14 mpeWasReset_clr 0 Writing a one clears mpeWasReset. Writing a

zero has no effect.
13 resetMpe_set resetMpe Writing a one causes the MPE to be reset. Writing

a zero has no effect. Reset clears this bit.
12 (reserved) 0
11 intToHost_set intToHost When this bit is set, an exception interrupt will be

generated from this MPE to the debug control
module. Writing a zero has no effect.

10 intToHost_clr 0 Writing a one clears the intToHost register.
Writing a zero has no effect.

9 mpeIs2x_set mpeIs2X Writing a one to this bit sets the control bit that
allows the MPE to run at 2X speed (108 MHz
instead of 54 MHz). Writing a zero has no effect.
When read, this bit gives the state of this control
bit. See note below.
Aries 3 and up only.

8 mpeIs2x_clr 0 Writing a one to this bit clears the control bit that
allows the MPE to run at 2X speed. Writing a zero
has no effect. See note below.
Aries 3 and up only

7 daWrBrkEn_set daWrBrkEn Writing a one to this bit enables the data address
write breakpoint. Writing a zero has no effect.
When read, this bit gives the state of this enable.
See the dabreak register description below.

6 daWrBrkEn_clr 0 Writing a one clears the data address write break
point enable. Writing a zero has no effect.

5 daRdBrkEn_set daRdBrkEn Writing a one enables the data address read

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 41

Bit “Write” value “Read” value Description
breakpoint. Writing a zero has no effect. When
read, this bit gives the state of this enable. See the
dabreak register description below.

4 daRdBrkEn_clr 0 Writing a one clears the data address read break
point. Writing a zero has no effect.

3 singleStep_set singleStep While singleStep is set,the MPE is in single step
mode. In this mode, each time mpeGo is set only
one instruction packet will be executed, then
mpeGo will be cleared. Writing a one sets the
singleStep bit. Writing a zero has no effect.

2 singleStep_clr 0 Writing as one clears the singleStep bit. Writing a
zero has no effect.

1 mpeGo_set mpeGo While mpeGo is set, the MPE is enabled and will
execute instructions (but see singleStep above).
Writing a one sets the mpeGo bit. Writing a zero
has no effect.

0 mpeGo_clr 0 Writing as one clears the mpeGo bit. Writing a
zero has no effect.

Note: You can only change the MPE speed when you are certain that there is no activity on the
main bus, other bus, or comm. bus for that MPE. This means all these interfaces must be idle,
there is no cache activity, you must be certain no other device is trying to send you comm. bus
packets, and no other device is making you the source or destination of a DMA. After the speed
change you should allow a few cycles (say five) before doing anything. This means that the code
making the speed change must be resident.

The safe way to do this is to use the BIOS _CompatibilityMode call, and not to change
these bits directly.

excepsrc Exception Source Register
Address: $2050_0010
Read / Write

The hardware sets these “exception source” bits when the corresponding hardware exception
occurs, whether or not the MPE is attempting to set or clear the bit in the same tick. For each bit,
writing a zero has no effect, while writing a one sets the bit.

Bit Name Description
12 excepSrc_copr_error coprocessor error
11 excepSrc_cdma_error coprocessor dma error
10 excepSrc_odma_error otherbus dma error
9 excepSrc_mdma_error mainbus dma error
8 excepSrc_iport_address_error iport-address error
7 excepSrc_dbus_address_error dbus-address error
6 excepSrc_bilin_addr_error bilinear address error
5 excepSrc_rfmulport_error regfile mul-write port conflict
4 excepSrc_rfmemport_error regfile mem-write port conflict
3 excepSrc_da_breakpoint data-address breakpoint
2 excepSrc_breakpointnow breakpoint instruction
1 excepSrc_singleStep single-step break

PAGE 42 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Name Description
0 excepSrc_halt “halt” instruction

excepclr Exception Clear
Address: $2050_0020
Read / Write

Writing a 1 to any bit in this register clears the corresponding bit in the excepsrc register (unless
the hardware is capturing that exception into excepsrc in that same tick). Writing a 0 has no
effect. Always reads as zero.

excephalten Exception Halt Enable Register
Address: $2050_0030
Read / Write

There are 13 conditions that are classified as “exceptions”, including error conditions and debug
conditions. Normally, when an exception is captured in the excepsrc register, it causes the MPE
to halt and raise its outgoing exception signal so that some other MPE or debug host can deal
with the situation. However, this behavior may be disabled for each exception condition by
setting the corresponding excepHaltEn bit to zero. Then if this exception occurs, the MPE will
cause the “exception” bit in its own intsrc register to be set.

Bit Name Description
12 excepHaltEn_copr_error coprocessor error
11 excepHaltEn_cdma_error coprocessor dma error
10 excepHaltEn_odma_error otherbus dma error
9 excepHaltEn_mdma_error mainbus dma error
8 excepHaltEn_iport_address_error iport-address error
7 excepHaltEn_dbus_address_error dbus-address error
6 excepHaltEn_bilin_addr_error bilinear address error
5 excepHaltEn_rfmulport_error regfile mul-write port conflict
4 excepHaltEn_rfmemport_error regfile mem-write port conflict
3 excepHaltEn_da_breakpoint data-address breakpoint
2 excepHaltEn_breakpointnow breakpoint instruction
1 excepHaltEn_singleStep single-step break
0 excepHaltEn_halt “halt” instruction

cc Condition Code Register
Address: $2050_0040
Read / Write

As described in the MPE instruction reference section, condition code flags are set or cleared or
unchanged by each instruction. ECU instructions can test combinations of these flags for
conditional branches and jumps.

Bit Name Description
10 cf1 Co-processor flag 1. Used by MPE coprocessor hardware.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 43

Bit Name Description
9 cf0 Co-processor flag 0. Used by MPE coprocessor hardware, e.g. MPE 2 interface to

BDU.
8 modmi RCU range low flag. Indicates whether the source operand of a modulo or range

instruction is less then zero
7 modge RCU range high flag. Indicates whether the source operand of a modulo or range

instruction is greater than or equal to the relevant range register
6 c1z RCU rc0 register zero flag. Indicates whether the rc0 counter is zero.
5 c0z RCU rc1 register zero flag. Indicates whether the rc1 counter is zero.
4 mv MUL overflow flag. Indicates whether significant bits are lost as a result of the shift in

a scalar multiply instruction.
3 n ALU negative flag. Indicates whether a scalar ALU result is negative.
2 v ALU overflow flag. Indicates whether a scalar ALU operation overflows.
1 c ALU carry / borrow flag. Indicates whether there is a carry from an ALU scalar

addition or a borrow from an ALU scalar subtraction or compare.
0 z ALU zero flag. Indicates whether a scalar ALU result is zero.

pcfetch Program Counter at Fetch stage
Address: $2050_0050
Read / Write

When read, this location reflects the current state of the program counter. It may only be written
when the mpeGo bit in mpectl is cleared, and it must always be written to with a valid program
address before setting that bit.

pcroute Program Counter at Route stage
Address: $2050_0060
Read / Write

This location gives the program address of the instruction currently at the routing stage of the
pipeline. This is a full 32-bit address on a word boundary, i.e. bit 0 is always clear. It is not
normally written to.

pcexec Program Counter at Execute stage
Address: $2050_0070
Read / Write

This location gives the program address of the instruction currently at the execute stage of the
pipeline. It is not normally written to.

PAGE 44 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

rz Sub-routine return address
Address: $2050_0080
Read / Write

This register is used for sub-routine calls to hold the return program address. Refer to the ECU
description.

rzi1 Level 1 interrupt return address
Address: $2050_0090
Read / Write

This register is used to return from level 1 interrupts, and holds the program fetch address to be
restored. When taking a level-1 interrupt, the value in pcroute is loaded into rzi1. Then, when an
rti cc,rzi1 or rti cc,rzi1,nop instruction is taken, rzi1 is used as the jump destination. Refer to
the ECU description.

rzi2 Level 2 interrupt return address
Address: $2050_00A0
Read / Write

This register is used to return from level 2 interrupts, and holds the program fetch address to be
restored. When taking a level-2 interrupt, the value in pcroute is loaded into rzi2. Then, when an
rti cc,rzi2 or rti cc,rzi2,nop instruction is taken, rzi2 is used as the jump destination. Refer to
the ECU description.

intvec1 Level 1 interrupt vector
Address: $2050_00B0
Read / Write

This location holds the program address of the level 1 interrupt service routine. Control is
transferred to this location in instruction memory when a level 1 interrupt occurs, by forcing a
jump.

intvec2 Level 2 interrupt vector
Address: $2050_00C0
Read / Write

This location holds the program address of the level 2 interrupt service routine. Control is
transferred to this location in instruction memory when a level 2 interrupt occurs, by forcing a
jump.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 45

intsrc Interrupt source
Address: $2050_00D0
Read / Write

The hardware sets these “interrupt source” bits when the corresponding hardware interrupt signal
is high, whether or not the corresponding enable bit in the intctl register is set, whether or not the
MPE is halted, and whether or not the MPE is attempting to set or clear that bit in the same tick.
For each bit, writing a zero has no effect, while writing a one sets the bit. The bits correspond to
interrupts as follows:
Bit Interrupt Description

31 vidtimer VDG beam position interrupt
30 systimer1 System timer 1 interrupt
29 systimer0 System timer 0 interrupt
28 gpio GPIO IO pin combined interrupt
27 audio Audio system interrupt
26 host External host (System Bus) interrupt
25 debug Debug control unit interrupt
24 mcumbdone MCU macro-block done interrupt
23 mcudctdone MCU DCT done interrupt
22 bdumbdone BDU macro-block done interrupt (MPE 2 only)
21 bduerror BDU error flag (MPE 2 only)
20 iicperiph Serial Peripheral Bus interrupt
19 mdmafinish Main Bus DMA finish interrupt (for debug)
18 mdmadump Main Bus DMA dump interrupt (for debug)
17 mdmaotf Main Bus DMA otf interrupt (for debug)
16 systimer2 System timer 2 interrupt
13 vdmaready VLD DMA ready interrupt (MPE 1 only)
12 vdmadone VLD DMA done interrupt (MPE 1 only)
9 odmaready Other Bus DMA ready interrupt
8 odmadone Other Bus DMA done interrupt
7 mdmaready Main Bus DMA ready interrupt
6 mdmadone Main Bus DMA done interrupt
5 commxmit Comm Bus transmit buffer empty interrupt
4 commrecv Comm Bus receive buffer full interrupt
1 software Software generated interrupt
0 exception Local MPE exception interrupt

intclr Interrupt clear
Address: $2050_00E0
Read / Write

Writing a one to any bit in this register clears the corresponding bit in the intsrc register, while
writing a zero has no effect. Always reads as zero. The bits correspond to interrupts as follows:

PAGE 46 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

intctl Interrupt control register
Address: $2050_00F0
Read / Write

This register is used to control the masking of interrupts. The imaskHw bits are set by the
hardware whenever the corresponding interrupt occurs, and are cleared by the hardware when the
rti from the ISR is executed. They may be left set throughout the ISR, or cleared and set
appropriately to allow re-entrant interrupt behavior. Never set or clear the imaskHw1 bit unless
the imaskSw1 bit is already set. Never set or clear the imaskHw2 bit unless the imaskSw2 bit is
already set.

The imaskSw bits also provide a mechanism for masking interrupts in software.

This register may be modified by writing a pattern to it with the appropriate set or clear bits set
to one, and all other bits zero. This allows atomic modifications to this register, so that read-
modify-write operations are normally unnecessary.

imaskSw2 masks level-2 interrupts
imaskHw2 masks both level-1 and level-2 interrupts
imaskSw1 masks level-1 interrupts
imaskHw1 masks level-1 interrupts

Bit Name Description
7 imaskSw2_set Writing a one to this location sets the imaskSw2 bit, writing a zero has no

effect. The imaskSw2 bit can be read from here.
Software can set the imaskSw2 bit to mask the level 2 interrupt and clear
it to enable whichever interrupt source is selected. The imaskSw2 bit is
not changed by hardware, other than forcing it to zero on reset.

6 imaskSw2_clr Writing a one to this location clears the imaskSw2 bit, writing a zero has
no effect. This bit is always read as zero.

5 imaskHw2_set Writing a one to this location sets the imaskHw2 bit, writing a zero has no
effect. The imaskHw2 bit can be read from here.
The imaskHw2 bit is set when taking a level 2 interrupt branch, is cleared
by the rti from a level 2 ISR, and may be set or cleared by software just
like the imaskSw2 bit.

4 imaskHw2_clr Writing a one to this location clears the imaskHw2 bit, writing a zero has
no effect. This bit is always read as zero.

3 imaskSw1_set Writing a one to this location sets the imaskSw1 bit, writing a zero has no
effect. The imaskSw1 bit can be read from here.
Software can set the imaskSw1 bit to mask the level 1 interrupt and clear
it to enable whichever interrupt sources are selected. The imaskSw1 bit is
not changed by hardware, other than forcing it to zero on reset.

2 imaskSw1_clr Writing a one to this location clears the imaskSw1 bit, writing a zero has
no effect. This bit is always read as zero.

1 imaskHw1_set Writing a one to this location sets the imaskHw1 bit, writing a zero has no
effect. The imaskHw1 bit can be read from here.
The imaskHw1 bit is set when taking a level 1 interrupt branch, is cleared
by the rti from a level 1 ISR, and may be set or cleared by software just
like the imaskSw1 bit.

0 imaskHw1_clr Writing a one to this location clears the imaskHw1 bit, writing a zero has
no effect. This bit is always read as zero.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 47

inten1 Level 1 interrupt enables
Address: $2050_0100
Read / Write

This register defines which interrupts are enabled as level 1 interrupts. Any number of level 1
interrupts may be simultaneously enabled. The bits correspond to interrupts as follows:
Bit Enbable Description

31 vidtimer VDG beam position interrupt enable
30 systimer1 System timer 1 interrupt enable
29 systimer0 System timer 0 interrupt enable
28 gpio GPIO IO pin combined interrupt enable
27 audio Audio system interrupt enable
26 host External host (sSstem Bus) interrupt enable
25 debug Debug control unit interrupt enable
24 mcumbdone MCU macro-block done interrupt enable
23 mcudctdone MCU DCT done interrupt enable
22 bdumbdone BDU macro-block done interrupt enable (MPE 2 only)
21 bduerror BDU error flag interrupt enable (MPE 2 only)
20 iicperiph Serial Peripheral Bus interrupt enable
19 mdmafinish Main Bus DMA finish interrupt enable (for debug)
18 mdmadump Main Bus DMA dump interrupt enable (for debug)
17 mdmaotf Main Bus DMA otf interrupt enable (for debug)
16 systimer2 System timer 2 interrupt enable
13 vdmaready VLD DMA ready interrupt enable (MPE 1 only)
12 vdmadone VLD DMA done interrupt enable (MPE 1 only)
9 odmaready Other Bus DMA ready interrupt enable
8 odmadone Other Bus DMA done interrupt enable
7 mdmaready Main Bus DMA ready interrupt enable
6 mdmadone Main Bus DMA done interrupt enable
5 commxmit Comm Bus transmit buffer empty interrupt enable
4 commrecv Comm Bus receive buffer full interrupt enable
1 software Software generated interrupt enable
0 exception Local MPE exception interrupt enable

inten1set Level 1 interrupt enables set
Address: $2050_0110
Read / Write

Writing a 1 to any bit in this register sets the corresponding bit in the inten1 register, while
writing a 0 has no effect. Always reads the same as inten1.

inten1clr Level 1 interrupt enables clear
Address: $2050_0120
Read / Write

Writing a 1 to any bit in this register clears the corresponding bit in the inten1 register, while
writing a 0 has no effect. Always reads as zero.

PAGE 48 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

inten2sel Level 2 interrupt enable
Address: $2050_0130
Read / Write

This register defines which interrupt is enabled as a level 2 interrupt. Only one level 2 interrupt
may be enabled at once. The selection of the interrupt source is programmed as follows:
Bits Value Enables Description

31 vidtimer The VDG beam position interrupt.
30 systimer1 System timer 1.
29 systimer0 System timer 0.
28 gpio The GPIO IO pin combined interrupt.
27 audio The audio system interrupt.
26 host The external host (System Bus) interrupt.
25 debug The debug control unit interrupt.
24 mcumbdone The MCU macro-block done interrupt.
23 mcudctdone The MCU DCT done interrupt.
22 bdumbdone The BDU macro-block done interrupt (MPE 2 only).
21 bduerror The BDU error interrupt (MPE 2 only).
13 vdmaready The VLD DMA ready interrupt (MPE 1 only).
12 vdmadone The VLD DMA done interrupt (MPE 1 only).
9 odmaready The Other Bus DMA ready interrupt.
8 odmadone The Other Bus DMA done interrupt.
7 mdmaready The Main Bus DMA ready interrupt.
6 mdmadone The Main Bus DMA done interrupt.
5 commxmit The Comm Bus transmit buffer empty interrupt.
4 commrecv The Comm Bus receive buffer full interrupt.
1 software Software generated interrupt.

4-0

0 exception Local MPE exception

rc0 Counter register rc0
Address: $2050_01E0
Read / Write

This register is the first of two hardware loop counters in the RCU.

Bit Name Description
15-0 rc0 Loop counter 0

rc1 Counter register rc1
Address: $2050_01F0
Read / Write

This register is the second of two hardware loop counters in the RCU.

Bit Name Description
15-0 rc1 Loop counter 1

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 49

rx Register rx
Address: $2050_0200
Read / Write

This 32-bit register forms the X part of the XY address generator. It is normally a 16.16 bit
number. See the memory unit description for more details.

ry Register ry
Address: $2050_0210
Read / Write

This 32-bit register forms the Y part of the XY address generator. It is normally a 16.16 bit
number. See the memory unit description for more details.

xyrange rx / ry range values
Address: $2050_0220
Read / Write

Sets the range of rx and ry for the modulo and range instructions.

Bit Description
25-16 X range
9-0 Y range

xybase XY address generator base address
Address: $2050_0230
Read / Write

Bit Name Description
31-2 xybase Address of XY map in physical memory

xyctl XY control flags
Address: $2050_0240
Read / Write

Bit Name Description
30 x_rev Bit reverse X for FFT addressing
29 y_rev Bit reverse Y for FFT addressing
28 xy_chnorm Flags chrominance normalization
26-24 xy_mipmap Binary point position of X and Y
23-20 xy_type Pixel map type of XY image, described in full in the Memory Unit section.

Type Mapping Bits Note
0 MPEG pixel 24 see notes on storage format

PAGE 50 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Name Description
1 Pixel data type 1 4 for CLUT lookup
2 Pixel data type 2 16
3 Pixel data type 3 8 for CLUT lookup
4 Pixel data type 4 32
5 Pixel data type 5 32
6 Pixel data type 6 64
8 Byte 8 not valid as a pixel load/store type
9 Word 16 not valid as a pixel load/store type
A Scalar 32 not valid as a pixel load/store type
C Small vector 64 not valid as a pixel load/store type
D Vector 128 not valid as a pixel load/store type

19-16 x_tile Defines the mask for X for tiling source bit-maps
15-12 y_tile Defines the mask for Y for tiling source bit-maps
10-0 xy_width Width of XY image along Y dimension

ru Register ru
Address: $2050_0250
Read / Write

This 32-bit register forms the U part of the UV address generator. It is normally a 16.16 bit
number. See the memory unit description for more details.

rv Register rv
Address: $2050_0260
Read / Write

This 32-bit register forms the V part of the UV address generator. It is normally a 16.16 bit
number. See the memory unit description for more details.

uvrange ru / rv range values
Address: $2050_0270
Read / Write

Sets the range of ru and rv for the modulo and range instructions.

Bit Description
25-16 U range
9-0 V range

uvbase UV address generator base address
Address: $2050_0280
Read / Write

Bit Name Description
31-2 uvbase Address of UV map in physical memory

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 51

uvctl UV control flags
Address: $2050_0290
Read / Write

Bit Name Description
30 u_rev Bit reverse U for FFT addressing
29 v_rev Bit reverse V for FFT addressing
28 uv_chnorm Flags chrominance normalization
26-24 uv_mipmap Binary point position of U and V
23-20 uv_tvpe Pixel map type of UV image, described in full in the Memory Unit section.

Type Mapping Bits Note
0 MPEG pixel 24 see notes on storage format
1 Pixel data type 1 4 for CLUT lookup
2 Pixel data type 2 16
3 Pixel data type 3 8 for CLUT lookup
4 Pixel data type 4 32
5 Pixel data type 5 32
6 Pixel data type 6 64
8 Byte 8 not valid as a pixel load/store type
9 Word 16 not valid as a pixel load/store type
A Scalar 32 not valid as a pixel load/store type
C Small vector 64 not valid as a pixel load/store type
D Vector 128 not valid as a pixel load/store type

19-16 u_tile Defines the mask for U for tiling source bit-maps
15-12 v_tile Defines the mask for V for tiling source bit-maps
10-0 uv_width Width of UV image along V dimension

linpixctl Linear address pixel transfer control flags
Address: $2050_02A0
Read / Write

This register sets the data type and chrominance normalization of ld_p, ld_pz, st_p and st_pz
instructions that have a linear address. See the memory unit description for more details.

Bit Name Description
28 linpix_chnorm Flags chrominance normalization for type 2 small vectors.
23-20 linpix_type Defines the data mapping used for the linear forms of load and store pixel,

and load and store pixel with Z. The meaning of the bits in this field is
identical to xy_type, described in full in the Memory Unit section.
Type Mapping Bits Note
0 MPEG pixel 24 see notes on storage format
1 Pixel data type 1 4 for CLUT lookup
2 Pixel data type 2 16
3 Pixel data type 3 8 for CLUT lookup
4 Pixel data type 4 32
5 Pixel data type 5 32
6 Pixel data type 6 64
8 Byte 8 not valid as a pixel load/store type
9 Word 16 not valid as a pixel load/store type

PAGE 52 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

A Scalar 32 not valid as a pixel load/store type
C Small vector 64 not valid as a pixel load/store type
D Vector 128 not valid as a pixel load/store type

clutbase Base address of color lookup table
Address: $2050_02B0
Read / Write

This is the base address of the color lookup table, which is used for Pixel Map types 1 and 3 (see
Memory Unit for details). This table is only used for load pixel.

Bit Name Description
31-6 clutbase Address of the color lookup table in physical memory

svshift Small Vector Multiply Shift Control
Address: $2050_02C0
Read / Write

Defines the amount by which the 32-bit result of the mul_sv and mul_p instructions is shifted
right.

Bit Name Description
1-0 svshift Shift amount, see below.

The table of possible values for the right shift amount is:

Value Shift by Small vector product definition
0

<< 16

32 bit product

$000016 product LSBs

for the product of 16.0 values as a 16.0 small
vector value

1

<< 8

32 bit product

$0024 product LSBs

for the product of 8.8 values as an 8.8 small
vector value

2

<< 0

32 bit product

all product bits

for the full 32-bit products

3

<< 2

32 bit product

%0030 product LSBs

for the product of 2.14 values as a 2.14 small
vector value

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 53

acshift Scalar Multiply Shift Control
Address: $2050_02D0
Read / Write

Default right shift value used by some MUL unit instructions. This is a 7 bits, two’s complement
number, the valid range is +63 to -32. The value in here is sign extended to 32 bits on a read.

Bit Name Description
7-0 acshift Shift amount, see below.

sp MPE Stack pointer
Address: $2050_02E0
Read / Write

This is the stack pointer used by push and pop instructions. It must always lie on a vector
boundary.

Bit Name Description
31-4 sp Stack pointer.

dabreak Data Breakpoint Address
Address: $2050_02F0
Read / Write

This is the 32-bit internal MPE Data Port address to break on. It works in conjunction with the
daRdBrkEn and daWrBrkEn bits in the mpectl register.

When enabled, the data address breakpoint for read or write should trigger if the dabreak
address is accessed (for read or write respectively) by any executed mem-unit operation. This is
true even if the mem-unit address does not exactly match the data breakpoint address, so long as
any part of the accessed data value is at the dabreak address. For example, even if the dabreak
register has non-zero bits 3-0, a ld_v address (bits 3-0 are zero) which matches bits 31-4 of
dabreak should trigger a da-read-breakpoint, while a ld_b address which matches bits 31-4 but
doesn't match bits 3-0 should not trigger.

Bit Name Description
31-0 dabreak Data breakpoint address.

r0-r31 Registers r0-r31
Address: $2050_0300, $2050_0310, ……, $2050_04f0
Read / Write

Register File 32-bit scalar registers r0 to r31. The addresses above are for debugger DMA access
only, and must not be used as the memory address operand of store and load instructions.

PAGE 54 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

odmactl Other Bus DMA control and status register
Address: $2050_0500
Read / Write

See the Other Bus section of this document for a description of MPE Other Bus DMA.

Bit Description
6-5 Other Bus DMA bus priority, valid values are 1-2, with 2 being the highest priority. Default

value is 1. 0 disables Other Bus DMA, and 3 is reserved for future use.
4 Other Bus DMA command pending, this flag means that the DMA command pointer must not

be written to. This bit is read only.
3-0 Other Bus DMA active level, 0 indicates no activity, 1 means that a single DMA transfer is

active, 2 means that a data transfer is active and a command is pending, higher values will not
occur in Aries 1, 2 and 3.
These bits are read only.

odmacptr Other Bus DMA command pointer
Address: $2050_0510
Read / Write

The address of a valid Other Bus DMA command structure may be written to this register when
the DMA pending flag is clear. Writing this register initiates the DMA process. The address
written here must lie on a vector address boundary within the local MPE space.

Bit Description
22-4 Other bus DMA command address.

Note: Application software should not normally perform any direct DMA operations, but should
instead call the appropriate BIOS calls. There are potential interactions with the cache
mechanism that make directly using this hardware dangerous to correct operation.

mdmactl Main Bus DMA control and status register
Address: $2050_0600
Read / Write

See the Main Bus section of this document for a description of MPE Main Bus DMA.

Bits Name Description
31-
24

done_cnt_wr Write done count. This counter is used only when trying to set up
multiple overlapping read and write transfers. It is incremented by the
hardware whenever a write transfer completes, and is decremented by
software. Valid values are between 0 and $1D. Two error conditions
may also exits, $FE for overflow, and $FF for underflow.

23-
16

done_cnt_rd Read done count. This counter is used only when trying to set up
multiple overlapping read and write transfers. It is incremented by the
hardware whenever a read transfer completes, and is decremented by
software. Valid values are between 0 and $1D. Two error conditions
may also exits, $FE for overflow, and $FF for underflow.

15 cmd_error Command error. The DMA controller has found an error while
processing a command. There are Comm Bus registers in the DMA
controller to determine what was wrong in detail.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 55

Bits Name Description
14 dmpe_error Command pointer error. One of the following things has occurred:

• The command pointer write was to an invalid range
• The command pointer incremented past a 32K byte range.
• The command pointer was written while a transfer was pending.

11 done_cnt_wr_dec Decrement write done count. When a one is written to this bit the write
done counter is decremented. This should be performed when necessary
to clear the interrupt condition.

10 done_cnt_rd_dec Decrement read done count. When a one is written to this bit the read
done counter is decremented. This should be performed when necessary
to clear the interrupt condition.

9 done_cnt_enable Done count enable. Writing a one to this bit enables the read and write
done counter mechanism. This has a variety of effects, discussed below.
When read this bit returns the enable status.

8 done_cnt_disable Done count disable. Writing a one to this bit disables the read and write
done counter mechanism. This has a variety of effects, discussed below.
This bit always reads as zero.

6-5 priority Bus priority. Sets the bus priority for MPE DMA transfers. Valid values
are 1-3, with 3 being the highest priority.

4 pending Command pending. This flag means that the DMA command pointer
must not be written to. This bit is read only.

3-0 active DMA active level, this give the number of DMA commands that have
been accepted by the DMA controller, but whose data transfer is not yet
complete. In theory, this can reach a level of around 6 or 7. These bits
are read only.

mdmacptr Main Bus DMA command pointer
Address: $2050_0610
Read / Write

The address of a valid DMA command structure may be written to this register when the DMA
pending flag is clear. Writing this register initiates the DMA process. The address written here
must lie on a vector address boundary within the local MPE space.

Bit Description
22-4 Main Bus DMA command address.

Note: Application software should not normally perform any direct DMA operations, but should
instead call the appropriate BIOS calls. There are potential interactions with the cache
mechanism that make directly using this hardware dangerous to correct operation.

comminfo Communication Bus transfer information
Address: $2050_07E0
Read / Write

This register is used to pass an additional eight bits of data in each Comm Bus packet. This is
only possible between the MPEs, and on packets sent from the coded data interface.

Bit Description
23-16 Extended receive data (read only)
7-0 Extended transmit data (read / write)

PAGE 56 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

commctl Communication Bus status and control
Address: $2050_07F0
Read / Write

Bit Description
31 Receive buffer full (read only)
30 Receive disable (read / write)
23-16 Received source ID (read only)
15 Transmit buffer full (read only)
14 Transmit failed (read only)
13 Transmit retry flag (read / write)
12 Transmit bus lock flag (read / write)
7-0 Transmit target ID (read / write)

commxmit Communication Bus 128-bit transmit packet
Address: $2050_0800
Read / Write

This 128 bit register holds the Comm Bus transmit data. A write to the highest address triggers
the transmit. However, this register will normally be written to all at once with a vector store,
triggering the transmit. The four scalar registers are accessible as register commxmit0 -
commxmit3.

commrecv Communication Bus 128-bit receive packet
Address: $2050_0810
Read Only

This 128 bit register holds the Comm Bus receive data. A read from the highest address clears
the receive buffer full flag. However, this register will normally be read all at once with a vector
load, clearing the flag. The four scalar registers are accessible as register commrecv0 -
commrecv3.

configa Configuration a
Address: $2050_0FF0
Read only

Bit Name Description
31-24 mmp_release NUON release

$00 -
$01 Oz / Aries1
$02 -
$03 Aries2
$04 Aries3

23-16 mpe_release MPE Release

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 57

 $00 reserved for emulator
 $01 Oz / Aries
$02 -
$03 Aries2
$04 Aries3

15-8 mpe_identifier MPE Identification Number
 $00 mpe-0
 $01 mpe-1
 $02 mpe-2
 $03 mpe-3
 $99 reserved

7-2 reserved
1-0 where_on_reset MPE behavior coming out of reset

 00 halted
 01 executing from base of irom
 1x executing from base of iram

configb Configuration b
Address: $2050_0FF4
Read only

reserved

dcachectl Data Cache Control
Address: $2050_0FF8
Read / Write
MPEs 0 and 3 only

This register controls the operation of the data cache. It must be initialized, and the data tag
memory cleared, before making any cacheable memory references.

Bit Name Description
30-28 cState The MPE does not automatically stall after a dcacheable write access, even

if it misses, unless another dcacheable access is done while the dcachable
write is still being handled. This means that when any piece of code is
about to write the mdmacptr or odmacptr registers, if the environment is
such that a Cacheable-Write access might be in process, then either of two
things must be done to avoid a possible collision:

(1) Issue a cacheable read to the appropriate m/odma space, then
check that the corresponding m/odma "pending" bit is clear, then
go ahead and write the m/odmacptr register; or

(2) Repeatedly check whether these cState bits are 0, and when they
are, check that the m/odma "pending" bit is clear, then go ahead
and write the m/odmacptr register.

26-24 cWaysTried For diagnostic purposes only.
18-16 cCurrentWay For diagnostic purposes only.
10-8 cWayAssoc Number of cache ways, for multiple way set associative caching. Values 0-

7 correspond to 1-8 way set associative, respectively.
5-4 cWaySize Cache way size, this gives the size of each cache way, so the total memory

PAGE 58 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

used by the cache is the product of this and the number of ways.
Value Way size
00 1024 bytes
01 2048 bytes
10 4096 bytes
11 8192 bytes

1-0 cBlockSize Cache block size, this gives the size of the block fetched on a cache miss.
Value Block size
00 16 bytes
01 32 bytes
10 64 bytes
11 128 bytes

icachectl Instruction Cache Control
Address: $2050_0FFC
Read / Write
MPEs 0 and 3 only

This register controls the operation of the instruction cache. It must be initialized, and the
instruction tag memory cleared, before making any cacheable memory references.

Bit Name Description
30-28 cState For diagnostic purposes only.
26-24 cWaysTried For diagnostic purposes only.
18-16 cCurrentWay For diagnostic purposes only.
10-8 cWayAssoc Number of cache ways, for multiple way set associative caching. Values 0-

7 correspond to 1-8 way set associative, respectively.
5-4 cWaySize Cache way size, this gives the size of each cache way, so the total memory

used by the cache is the product of this and the number of ways.
Value Way size
00 1024 bytes
01 2048 bytes
10 4096 bytes
11 8192 bytes

1-0 cBlockSize Cache block size, this gives the size of the block fetched on a cache miss.
Value Block size
00 16 bytes
01 32 bytes
10 64 bytes
11 128 bytes

vdmactla VLD DMA Control Register A
Address: $2050_1100
Read / Write
MPE 1 only

This register controls DMA channel A between MPE 1 and the VLD unit in the BDU. This
hardware is specific to the MPEG decode function.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 59

Bit Name Description
24 a_active This bit should be set to initiate the transfer. It is cleared by hardware when

transfer completes.
19-0 a_count Number of bytes still to be transferred. Valid values are even and between

$00000 and $03FFE.

vdmactlb VLD DMA Control Register B
Address: $2050_1110
Read / Write
MPE 1 only

This register controls DMA channel B between MPE 1 and the VLD unit in the BDU. This
hardware is specific to the MPEG decode function.

Bit Name Description
24 b_active This bit should be set to initiate the transfer. It is cleared by hardware when

transfer completes.
19-0 b_count Number of bytes still to be transferred. Valid values are even and between

$00000 and $03FFE.

vdmaptra VLD DMA Pointer Register A
Address: $2050_1120
Read / Write
MPE 1 only

This register gives the address of the next vector to be read by VLD DMA channel A from MPE
1 memory. This hardware is specific to the MPEG decode function.

Bit Name Description
22-4 Aptr Vector address in MPE memory.

vdmaptrb VLD DMA Pointer Register B
Address: $2050_1130
Read / Write
MPE 1 only

This register gives the address of the next vector to be read by VLD DMA channel B from MPE
1 memory. This hardware is specific to the MPEG decode function.

Bit Name Description
22-4 Bptr Vector address in MPE memory.

vld and bdu control registers
$20501200 to $20501320
Read / Write
MPE 2 only

See the BDU section of this document.

PAGE 60 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

MPE INSTRUCTION SET REFERENCE

Instruction set summary
This list summarizes all the instructions available from all the function units. Each instruction typically
offers several versions of pre-processing or effective addressing of the source data.

Mnemonic Function
unit

Description

abs ALU Convert the signed integer to its unsigned absolute value
add ALU Arithmetic addition
add_p ALU Add pixel values
add_sv ALU Add small vector
addm MUL Arithmetic addition using the MUL unit
addr RCU Special purpose register addition
addwc ALU Arithmetic addition with carry
and ALU 32-bit logical AND of A and B
as ALU Arithmetic shift
asl ALU Arithmetic shift left
asr ALU Arithmetic shift right
bclr ALU Clear a bit in a register
bits ALU Bit field extraction
bra ECU conditional branch to an offset relative to the program counter
breakpoint none Debug breakpoint
bset ALU Set a bit in a register
btst ALU Test a bit in a register
butt ALU Butterfly operation (sum and difference) of two scalar values
cmp ALU Arithmetic compare
cmpwc ALU Arithmetic compare with carry
copy ALU Register to register move through the ALU
dec RCU Decrement rc0 or rc1 register, unless it is zero
dotp MUL Multiply all elements of a small vector, and produce their sum
eor ALU 32-bit logical EOR of A and B
ftst ALU Bit field test
halt ECU Halt program execution
jmp ECU Conditional jump to an absolute address
jsr ECU Conditional jump to subroutine at an absolute address
ld_b MEM Load byte
ld_io MEM Obsolete instruction form, equivalent to load scalar
ld_p MEM Load pixel
ld_pz MEM Load pixel plus Z data
ld_s MEM Load scalar
ld_sv MEM Load small vector
ld_v MEM Load vector
ld_w MEM Load word
ls ALU Logical shift
lsl ALU Logical shift left
lsr ALU Logical shift right
mirror MEM Reverse the bit order of a scalar

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 61

Mnemonic Function
unit

Description

modulo RCU Range limit index register
msb ALU Find the MSB of the source operand
mul MUL Multiply two (32-bit) scalars
mul_p MUL Multiply all elements of a pixel
mul_sv MUL Multiply all elements of a small vector
mv_s MEM Move Scalar
mv_v MEM Move Vector
mvr RCU Move scalar data to index register
neg ALU Arithmetic complement
nop ALU Null operation
not ALU Logical complement
or ALU 32-bit logical OR of A and B
pad none Instruction packet alignment padding
pop MEM Pop data from stack
push MEM Push data on to stack
range RCU Range check index register
rot ALU Rotate scalar
rti ECU Return from interrupt
rts ECU Return from subroutine
sat ALU Arithmetic saturation
st_io MEM Obsolete instruction form, equivalent to store scalar
st_p MEM Store pixel
st_pz MEM Store pixel plus Z data
st_s MEM Store scalar
st_sv MEM Store small vector
st_v MEM Store vector
sub ALU Arithmetic subtraction
subwc ALU Arithmetic subtraction with carry
sub_p ALU Subtract pixels
sub_sv ALU Subtract small vectors
subm MUL Arithmetic subtraction using the MUL unit

PAGE 62 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

abs Absolute Value abs
Function Unit: ALU

Operation: absolute_value (Scalar Register) ⇒ Scalar Register
Description: Convert the input signed integer to an unsigned integer by negating it if it is

negative, and leaving it unchanged if it is positive. The carry flag reflects the sign
of the value prior to this operation.

 Note that this function might be considered to fail if the input value is $80000000
as there is no positive signed integer equivalent. Of course, if the output value is
considered to be an unsigned integer, then the result is correct. The n or v flag
may be used to detect this condition.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
abs Sk take the absolute value of Sk, writing the result to Sk

Operand Values: Sk is any scalar register r0-r31.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : set if source operand was negative, cleared otherwise.
v : set if the result is negative, cleared otherwise.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 63

add Scalar Addition add
Function Unit: ALU

Operation: Scalar + Scalar ⇒ Scalar Register
Description: Compute the thirty-two bit sum of two scalar sources, writing the result to a scalar

register.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
add Si,Sk add Si to Sk, writing the result to Sk
add #n,Sk add #n to Sk, writing the result to Sk 0 ≤ n ≤ 31
32-bit forms
add Si,Sj,Sk add Si to Sj, writing the result to Sk
add #n,Sj,Sk add #n to Sj, writing the result to Sk 0 ≤ n ≤ 31
add #nn,Sk add #nn to Sk, writing the result to Sk 0 ≤ nn ≤ 1023
add #n,>>#m,Sk add #n arithmetically shifted right by #m, to Sk,

writing the result to Sk
0 ≤ n ≤ 31

-16 ≤ m ≤ 0
add Si,>>#m,Sk add Si arithmetically shifted right by #m, to Sk,

writing the result to Sk
-16 ≤ m ≤ 15

48-bit forms
add #nnnn,Sk add #nnnn to Sk, writing the result to Sk -(2^31) ≤ nnnn ≤ (2^31)-1
64-bit forms
add #nnnn,Sj,Sk add #nnnn to Sj, writing the result to Sk -(2^31) ≤ nnnn ≤ (2^31)-1

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31.
Sk any scalar register r0-r31.
#n 5-bit immediate value, zero extended to 32 bits.
#nn 10-bit immediate value, zero extended to 32 bits.
#nnnn 32-bit immediate value.
#m immediate shift value.
>> shifts are arithmetic, right for positive values, left for negative values, and
 overflow from shift out is not detected.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : set if there is a carry out of the addition, cleared otherwise.
v : set if there is signed arithmetic overflow (sign is invalid), cleared otherwise.

 Other condition codes are unchanged by this instruction.

PAGE 64 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

add_p Pixel Addition add_p
Function Unit: ALU

Operation: Pixel + Pixel ⇒ Pixel Register (first 3 scalars of a vector)
Description: (This instruction behaves identically to the add_sv instruction, except that only

the three lowest numbered scalars of the vector register destination are written.)

 Add two pixels. Pixels consist of three 16 bit elements, taken from the 16 MSBs
of the first three scalars in a vector register. Each 16 bit element of the first source
is independently added to the corresponding element in the other source, and the
result is written to the destination vector register in the same format. The lower 16
bits of each of the first three scalars in the vector destination are written with
zeros.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
add_p Vi,Vj,Vk add pixel Vi to pixel Vj, writing the result to Vk

Operand Values: Vi any vector register v0-v7, as a pixel.
Vj any vector register v0-v7, as a pixel.
Vk any vector register v0-v7, as a pixel.

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 65

add_sv Small Vector Addition add_sv
Function Unit: ALU

Operation: Small vector Source A + Small vector Source B ⇒ Vector Destination
Description: Add two small vectors. Small vectors consist of four 16 bit elements, taken from

the 16 MSBs of the four scalars in a vector register. Each 16 bit element of the
first source is independently added to the corresponding element in the other
source, and the result is written to the destination vector register in the same
format. The lower 16 bits of each scalar element of the vector destination are
written with zeros.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
add_sv Vi,Vk add small-vector Vi to small-vector Vk, writing the result to Vk
32-bit forms
add_sv Vi,Vj,Vk add small-vector Vi to small-vector Vj, writing the result to Vk

Operand Values: Vi any vector register v0-v7, as a small-vector.
Vj any vector register v0-v7, as a small-vector.
Vk any vector register v0-v7, as a small-vector.

Condition Codes: Unchanged by this instruction.

PAGE 66 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

addm Scalar Addition using the MUL unit addm
Function Unit: MUL

Operation: Scalar + Scalar ⇒ Scalar Destination
Description: Use the MUL unit to add two scalars, writing the result to a scalar destination

register.

Unlike some MUL unit operations, this instruction completes in one tick, so the
result may be used in the immediately following packet. Note that the MUL unit
has only one write port into the register file, so there is a conflict if this instruction
executes in a packet immediately following a packet which executed any of the 2-
tick MUL unit instructions (mul, mul_p, mul_sv).

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
addm Si,Sj,Sk add Si to Sj writing the result to Sk

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31.
Sk any scalar register r0-r31.

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 67

addr Scalar Addition To RCU Index Register addr
Function Unit: RCU

Operation: Data + Index ⇒ Index
Description: Add register or immediate data to an index register. This instruction directly uses

the value of the index register and ignores the settings in the xyctl / uvctl
registers.

 Up to two dec instructions may also be encoded as bit-fields in this instruction, so
that up to three RCU operations may be executed in one cycle.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
addr Si,RI ✻ add Si to index register RI. All 32 bits of Si and RI

are used in this operation
addr #(n<<16),RI add #n to the integer part of index register RI,

treating RI as a 16.16 number
-16 ≤ n ≤ 15

48-bit forms
addr #nnnn,RI add #nnnn to index register RI. All 32 bits of #nnnn

and RI are used in this operation
-(2^31) ≤ nnnn ≤ (2^31)-1

Restricted Forms: ✻ Instructions marked with an asterisk share a register file read port with other
function units. Only one of these instructions may be present in a given packet:
ECU jmp/jsr cc,(Si) | cc,(Si),nop
RCU mvr/addr Si,RI
ALU and/or/eor/ftst Si,>>Sj,Sk | Si,<>Sj,Sk
MUL mul Si,Sk,>>Sq,Sk | #n,Sk,>>Sq,Sk

Operand Values: Si any scalar register r0-r31.
RI any index register rx, ry, ru, or rv.
#n 5-bit immediate value, sign extended to 16 bits.
#nnnn 32-bit immediate value.

Condition Codes: Unchanged by this instruction.

PAGE 68 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

addwc Scalar Addition With Carry addwc
Function Unit: ALU

Operation: Scalar + Scalar + Carry Flag ⇒ Scalar Register
Description: Compute the thirty-two bit sum of two scalar sources along with the current value

of the carry flag, writing the result to a scalar register.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
addwc Si,Sj,Sk add c to Si to Sj, writing the result to Sk
addwc #n,Sj,Sk add c to #n to Sj, writing the result to Sk 0 ≤ n ≤ 31
addwc #nn,Sk add c to #nn to Sk, writing the result to Sk 0 ≤ nn ≤ 1023
addwc #n,>>#m,Sk add c to #n arithmetically shifted right by #m, to

Sk, writing the result to Sk
0 ≤ n ≤ 31

-16 ≤ m ≤ 0
addwc Si,>>#m,Sk add c to Si arithmetically shifted right by #m, to

Sk, writing the result to Sk
-16 ≤ m ≤ 15

64-bit forms
addwc #nnnn,Sj,Sk add c to #nnnn to Sj, writing the result to Sk -(2^31) ≤ nnnn ≤ (2^31)-1

Operand Values: c current value of the c flag in the cc register, zero extended to 32 bits.
Si any scalar register r0-r31.
Sj any scalar register r0-r31.
Sk any scalar register r0-r31.
#n 5-bit immediate value, zero extended to 32 bits.
#nn 10-bit immediate value, zero extended to 32 bits.
#nnnn 32-bit immediate value.
#m immediate shift value.
>> shifts are arithmetic, right for positive values, left for negative values, and
 overflow from shift out is not detected.

Condition Codes: z : unchanged if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : set if there is a carry out of the addition, cleared otherwise.
v : set if there is signed arithmetic overflow (sign is invalid), cleared otherwise.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 69

and Logical AND and
Function Unit: ALU

Operation: Scalar AND Scalar ⇒ Scalar Register
Description: Bit-wise logical AND of two 32-bit sources, writing the result to a scalar register.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
and Si,Sk AND Si with Sk, writing the result to Sk
32-bit forms
and Si,Sj,Sk AND Si with Sj, writing the result to Sk
and #n,Sj,Sk AND #n with Sj, write result to Sk. Useful for

Lisp.
-16 ≤ n ≤ 15

and #n,<>#m,Sk AND #n rotated right by #m, with Sk, writing the
result to Sk. Useful for masking in or out, a bit
field.

-16 ≤ n ≤ 15
-∞ ≤ m ≤ ∞

and #n,>>Sj,Sk AND #n logically shifted right by Sj, with Sk,
writing the result to Sk

-16 ≤ n ≤ 15
-32 ≤ Sj ≤ 31

and Si,>>#m,Sk AND Si logically shifted right by #m, with Sk,
writing the result to Sk

-16 ≤ m ≤ 15

and Si,>>Sj,Sk ✻ AND Si logically shifted right by Sj, with Sk,
writing the result to Sk

-32 ≤ Sj ≤ 31

and Si,<>Sj,Sk ✻ AND Si rotated right by Sj, with Sk, writing the
result to Sk

all Sj are valid

64-bit forms
and #nnnn,Sj,Sk AND #nnnn with Sj, writing the result to Sk -(2^31) ≤ nnnn ≤ (2^31)-1
and #nnnn,>>Sj,Sk AND #nnnn logically shifted right by Sj, with Sk,

writing the result to Sk
-(2^31) ≤ nnnn ≤ (2^31)-1
-32 ≤ Sj ≤ 31

Restricted Forms: ✻ Instructions marked with an asterisk share a register file read port with other
function units. Only one of these instructions may be present in a given packet:
ECU jmp/jsr cc,(Si) | cc,(Si),nop
RCU mvr/addr Si,RI
ALU and/or/eor/ftst Si,>>Sj,Sk | Si,<>Sj,Sk
MUL mul Si,Sk,>>Sq,Sk | #n,Sk,>>Sq,Sk

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31. For shifts, bits 5-0 are used, bits 31-6 ignored.
Sk any scalar register r0-r31.
#n 5-bit immediate value, sign extended to 32 bits.
#nnnn 32-bit immediate value.
#m immediate shift or rotate value.
>> shifts are logical, right for positive values, left for negative values.
<> rotates are right for positive values, left for negative values.

PAGE 70 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

and Logical AND and
…continued
Condition Codes: z : set if the result is zero, cleared otherwise.

n : set if the result is negative, cleared otherwise.
c : unchanged.
v : cleared.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 71

as Arithmetic Shift as
Function Unit: ALU

Operation: Scalar Source A >> Source B ⇒ Scalar Destination
Description: Arithmetically shift source A either left or right by source B, setting flags

appropriately, and writing the result to destination. Only the bottom six bits of
Source B are used, the high-order 26 bits are ignored. A positive shift value
implies a right shift; a negative shift value implies a left shift

 For right shifts, the MSB (sign bit) is shifted into the most significant bit, as
shown below:

MSB SOURCE A C

31 0

Shift into carry is always from bit 0, in other words, this flag-setting function is
only valid for a shift by one. It may be used for any shift, but will always be the
contents of bit 0.

For left shifts, a zero is shifted in from the right, as shown below:

 SOURCE AC 0

31 0

Shift into carry is always from bit 31, in other words, this flag-setting function is
only valid for a shift by one. It may be used for any shift, but will always be the
contents of bit 31.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
as >>Sj,Si,Sk arithmetical shift right of Si by Sj, writing the result to Sk. -32 ≤ Sj ≤ 31

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31. Bits 5-0 are used, bits 31-6 are ignored.
Sk any scalar register r0-r31.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : for right shifts (Sj ≥ 0), c takes the value of bit 0 of Source A;
 for left shifts (Sj < 0), c takes the value of bit 31 of Source A.
v : cleared.

 Other condition codes are unchanged by this instruction.

PAGE 72 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

asl Arithmetic Shift Left asl
Function Unit: ALU

Operation: Scalar Source A << Source B ⇒ Scalar Destination
Description: Arithmetically shift left source A by source B, setting flags appropriately, and

writing the result to destination. Arithmetic and logical shifts are identical for a
left shift, and this is the same instruction as lsl. A zero is shifted in from the right,
as shown below:

 SOURCE AC 0

31 0

Shift into carry is always from bit 31, in other words, this flag-setting function is
only valid for a shift by one. It may be used for any shift, but will always be the
contents of bit 31.

A register shift-control version of asl is available through the as instruction.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
asl #m,Sk arithmetic shift left of Sk by #m, writing the result to Sk 0 ≤ m ≤ 31
32-bit forms
asl #m,Si,Sk arithmetic shift left of Si by #m, writing the result to Sk 0 ≤ m ≤ 31

Operand Values: Si any scalar register r0-r31.
Sk any scalar register r0-r31.
#m immediate shift value.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : bit 31 of source A.
v : cleared.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 73

asr Arithmetic Shift Right asr
Function Unit: ALU

Operation: Scalar Source A >> Source B ⇒ Scalar Destination
Description: Arithmetically shift right source A by source B, setting flags appropriately, and

writing the result to destination. The MSB (sign bit) is shifted into the most
significant bit, as shown below:

MSB SOURCE A C

31 0

Shift into carry is always from bit 0, in other words, this flag-setting function is
only valid for a shift by one. It may be used for any shift, but will always be the
contents of bit 0.

A register shift-control version of asr is available through the as instruction.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
asr #m,Sk arithmetic shift right of Sk by #m, writing the result to Sk 0 ≤ m ≤ 31
32-bit forms
asr #m,Si,Sk arithmetic shift right of Si by #m, writing the result to Sk 0 ≤ m ≤ 31

Operand Values: Si any scalar register r0-r31.
Sk any scalar register r0-r31.
#m immediate shift value.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : bit 0 of source A.
v : cleared.

 Other condition codes are unchanged by this instruction.

PAGE 74 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

bclr Clear a Bit in a Register bclr
Function Unit: ALU

Operation: Scalar Destination AND Mask ⇒ Scalar Destination
Description: Logical AND of the destination register with a bit mask which has all bits set

except the one selected by the immediate operand.

 This instruction is equivalent to the instruction form: and #-2,<>#-n,Sk.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
bclr #n,Sk clear the selected bit in Sk, writing the result to Sk 0 ≤ n ≤ 31

Operand Values: Sk any scalar register r0-r31.
#n 5-bit immediate value.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : unchanged.
v : cleared.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 75

bits Bit Field Extraction bits
Function Unit: ALU

Operation: Logical shift Scalar Destination right by m or Source i, mask above bit n
⇒ Scalar Destination

Description: This instruction is used to extract an arbitrary length bit-field at any bit position of
a scalar register and write the bit field back into that register aligned to bit zero.

 To achieve this, the register value is logic shifted right by an immediate or scalar
source register value. Then a second immediate value is used to generate a mask
to clear the high bits. The result is an arbitrarily aligned, arbitrary length field
which is written to the destination aligned to bit zero.

 Note that the value for the mask is one less than the number of bits extracted, i.e.
0 yields one bit, 1 yields two bits, up to 31 which gives thirty-two bits.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
bits #n,>>Si,Sk logical shift right of Sk by Si, then mask out any bits

above bit n, writing the result to Sk
0 ≤ n ≤ 31
0 ≤ Si ≤ 31

bits #n,>>#m,Sk logical shift right of Sk by #m, then mask out any bits
above bit n, writing the result to Sk

0 ≤ n ≤ 31
0 ≤ m ≤ 31

Operand Values: Si any scalar register r0-r31. Bits 4-0 are used, bits 31-5 are ignored.
Sk any scalar register r0-r31.
#n 5-bit immediate value, used to generate a mask.
#m immediate shift value.
>> shifts are logical, right for positive values, left for negative values.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : unchanged.
v : unchanged.

 Other condition codes are unchanged by this instruction.

PAGE 76 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

bra Branch To Relative Address bra
Function Unit: ECU

Operation: Conditional branch relative to the current pcexec program counter

Description: If the specified condition is true, then the branch is taken, otherwise the branch is
not taken. A taken branch which has a nop operand will force two ‘dead’ cycles
after executing the branch packet, then continue execution from the target
address. A taken branch which does not have a nop operand will have no ‘dead’
cycles—the branch packet, the next two packets, and the packet at the target
address will execute on successive cycles (ignoring unrelated pipeline stalls). If a
branch is not taken, whether or not it has a nop operand, execution will continue
with the next packet.

 The two instruction packets after a packet containing a branch without a nop
operand are in what is known as the “delay slots” of the branch. If such a branch
is taken, any ECU instructions (bra, halt, jmp, jsr, rti, rts) in its delay slots will
not be evaluated. If the branch is not taken, the delay slots execute normally. This
allows multi-way branch decisions to be made in successive instruction packets.

 Normally, a programmer lets the assembler choose the shortest form that will
accomodate the bra offset, condition, and possible use of the nop operand.

Assembler Syntax:
INSTRUCTION

DESCRIPTION

RANGE RESTRICTIONS ON
offset = <label> −−−− pcexec

16-bit forms
bra cc,<label> If the cc condition is

true: execute the next two packets,
 then continue execution at <label>.
false: continue execution with the next packet.

For this form only, the cc condition is
restricted to one of {ne, eq, lt, le, gt, ge, c0ne,
c1ne}.

-128 ≤ offset ≤ 126

bra <label> After executing the next two packets, continue
execution at <label>.

-1024 ≤ offset ≤ 1022

32-bit forms
bra cc,<label> If the cc condition is

true: execute the next two packets,
 then continue execution at <label>.
false: continue execution with the next packet.

-16484 ≤ offset ≤ 16382

bra cc,<label>,nop If the cc condition is
true: force two dead cycles,
 then continue execution at <label>.
false: continue execution with the next packet.

-16484 ≤ offset ≤ 16382

48-bit forms
bra cc,<label> If the cc condition is

true: execute the next two packets,
 then continue execution at <label>.
false: continue execution with the next packet.

-(2^31) ≤ offset ≤ (2^31)-2

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 77

bra Branch To Relative Address bra
…continued
INSTRUCTION

DESCRIPTION

RANGE RESTRICTIONS ON
offset = <label> −−−− pcexec

48-bit forms
bra cc,<label>,nop If the cc condition is

true: force two dead cycles,
 then continue execution at <label>.
false: continue execution with the next packet.

-(2^31) ≤ offset ≤ (2^31)-2

Operand Values: <label> is resolved to an address by the assembler/linker. This target address is

always an even number since instructions are on 16-bit boundaries. The offset
between the target address and the address of the packet that contains the branch
instruction is then calculated. This offset is encoded into the branch instruction,
and during program execution, the branch target address is created by adding the
offset value to the value in the pcexec register. (Note that it is illegal for the 32-bit
target address to lie within a different 1 Gbyte quarter of the address space from
the 32-bit pcexec of the branch packet.)

 cc may take on any of the following values, except as noted above (if not
specified, t is assumed):
cc mnemonic condition test
ne Not equal /z

eq Equal z

lt Less than (n./v) + (/n.v)

le Less than or equal z + (n./v) + (/n.v)

gt Greater than (n.v./z) + (/n./v./z)

ge Greater than or equal (n.v) + (/n./v)

c0ne rc0 not equal to zero /c0z

c1ne rc1 not equal to zero /c1z

c0eq rc0 equal to zero c0z

c1eq rc1 equal to zero c1z

cc (hs) Carry clear (High or same) /c

cs (lo) Carry set (Low) c

vc Overflow clear /v

vs Overflow set v

mvc Multiply overflow clear /mv

mvs Multiply overflow set mv

hi High /c./z

ls Low or same c + z

pl Plus /n

mi Minus n

t True 1

modmi modulo RI was < zero modmi

modpl modulo RI was >= zero /modmi

PAGE 78 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

bra Branch To Relative Address bra
…continued

cc mnemonic condition test
modge modulo RI was >= range modge

modlt modulo RI was < range /modge

cf0lo Coprocessor flag 0 low /cf0

cf0hi Coprocessor flag 0 high cf0

cf1lo Coprocessor flag 1 low /cf1

cf1hi Coprocessor flag 1 high cf1

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 79

breakpoint Debug Breakpoint breakpoint
Function Unit: none

Operation:

Description:

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
breakpoint

Condition Codes: Unchanged by this instruction.

PAGE 80 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

bset Set a Bit in a Register bset
Function Unit: ALU

Operation: Scalar Destination OR Mask ⇒ Scalar Destination
Description: Logical OR of the destination register with a bit mask which one bit set as

selected by the immediate operand.

 This instruction is equivalent to the instruction: or #1,<>#-n,Sk.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
bset #n,Sk set the selected bit in Sk, writing the result to Sk 0 ≤ n ≤ 31

Operand Values: Sk any scalar register r0-r31.
#n 5-bit immediate value.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : unchanged.
v : cleared.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 81

btst Bit Test btst
Function Unit: ALU

Operation: Test a bit of the Scalar Source ⇒ Flags
Description: Logical AND of a one bit mask and a 32-bit source register, without writing a

result back to a register. This instruction may be used to test a bit in any register.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
btst #m,Sj test bit #m of register Sj and set the flags accordingly 0 ≤ m ≤ 31

Operand Values: Sj any scalar register r0-r31.
#m 5-bit immediate value.

Condition Codes: z : set if the selected bit is zero, cleared otherwise.
n : set if the selected bit was bit 31 and it was not zero.
c : unchanged.
v : cleared.

 Other condition codes are unchanged by this instruction.

PAGE 82 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

butt Butterfly Operation butt
Function Unit: ALU

Operation: Scalar Source A + Scalar Source B ⇒ Scalar Destination K
Scalar Source A – Scalar Source B ⇒ Scalar Destination K+1

Description: Compute the thirty-two bit sum and difference of the two source operands, and
write these to the destination half-vector. A half-vector is a pair of scalar registers
on an even register boundary. The sum is written to the first register in the half-
vector pair, and the difference is written to the second.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
butt Si,Sj,Hk write the butterfly function result (Sj+Si, Sj-Si) to the destination half-vector Hk

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31.
Hk any scalar register r0-r31, even numbers only.

Condition Codes: z : set if the result of the add is zero, cleared otherwise.
n : set if the result of the add is negative, cleared otherwise.
c : set if there is a carry out of the add, cleared otherwise.
v : set if there is signed arithmetic overflow of the add, cleared otherwise.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 83

cmp Scalar Compare cmp
Function Unit: ALU

Operation: Scalar - Scalar ⇒ NULL
Description: Subtract one scalar value from another scalar value, setting the condition codes

appropriately, without any write-back of the result.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
cmp Si,Sj subtract Si from Sj
cmp #n,Sj subtract #n from Sj 0 ≤ n ≤ 31
32-bit forms
cmp #nn,Sq subtract #nn from Sq 0 ≤ nn ≤ 1023
cmp #n,>>#m,Sq subtract #n arithmetically shifted right by #m from

Sq
0 ≤ n ≤ 31

-16 ≤ m ≤ 0
cmp Si,#n subtract Si from #n 0 ≤ n ≤ 31
cmp Si,>>#m,Sq subtract Si arithmetically shifted right by #m from

Sq
-16 ≤ m ≤ 15

48-bit forms
cmp #nnnn,Sj subtract #nnnn from Sj -(2^31) ≤ nnnn ≤ (2^31)-1
64-bit forms
cmp Si,#nnnn subtract Si from #nnnn -(2^31) ≤ nnnn ≤ (2^31)-1

Operand Values: Si any scalar register r0-r31.

Sj any scalar register r0-r31.
Sq any scalar register r0-r31.
#n 5-bit immediate value, zero extended to 32 bits.
#nn 10-bit immediate value, zero extended to 32 bits.
#nnnn 32-bit immediate value.
#m immediate shift value.
>> shifts are arithmetic, right for positive values, left for negative values, and
 overflow from shift out is not detected.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : set if there is a borrow out of the subtraction, cleared otherwise.
v : set if there is signed arithmetic overflow (sign is invalid), cleared otherwise.

 Other condition codes are unchanged by this instruction.

PAGE 84 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

cmpwc Scalar Compare With Carry cmpwc
Function Unit: ALU

Operation: Scalar - Scalar - Carry Condition Code ⇒ NULL
Description: Subtract one scalar value from another scalar value and also subtract the current

value of the carry condition code bit, setting the condition codes appropriately,
without any write-back of the result.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
cmpwc Si,Sj subtract c and Si from Sj
cmpwc #n,Sj subtract c and #n from Sj 0 ≤ n ≤ 31
cmpwc #nn,Sq subtract c and #nn from Sq 0 ≤ nn ≤ 1023
cmpwc #n,>>#m,Sq subtract c and #n arithmetically shifted right by #m

from Sq
0 ≤ n ≤ 31

-16 ≤ m ≤ 0
cmpwc Si,#n subtract c and Si from #n 0 ≤ n ≤ 31
cmpwc Si,>>#m,Sq subtract c and Si arithmetically shifted right by #m

from Sq
-16 ≤ m ≤ 15

64-bit forms
cmpwc #nnnn,Sj subtract c and #nnnn from Sj -(2^31) ≤ nnnn ≤ (2^31)-1
cmpwc Si,#nnnn subtract c and Si from #nnnn -(2^31) ≤ nnnn ≤ (2^31)-1

Operand Values: c current value of the c flag in the cc register, zero extended to 32 bits.

Si any scalar register r0-r31.
Sj any scalar register r0-r31.
Sq any scalar register r0-r31.
#n 5-bit immediate value, zero extended to 32 bits.
#nn 10-bit immediate value, zero extended to 32 bits.
#nnnn 32-bit immediate value.
#m immediate shift value.
>> shifts are arithmetic, right for positive values, left for negative values, and
 overflow from shift out is not detected.

Condition Codes: z : unchanged if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : set if there is a borrow out of the subtraction, cleared otherwise.
v : set if there is signed arithmetic overflow (sign is invalid), cleared otherwise.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 85

copy Copy Register to Register through the ALU copy
Function Unit: ALU

Operation: Scalar Source ⇒ Scalar Destination
Description: Copy the source register to the destination register though the ALU, by adding

implied immediate zero to it. This instruction allows the ALU to be used to for a
register copy in parallel with other operations, which could include another
register to register copy through the memory unit (MEM).

This instruction is encoded in 16 bits, and is equivalent to the 32-bit instruction
form add #0,Si,Sk. It is called COPY to distinguish it from the MV instructions,
which use the memory unit, not the ALU; and do not set the flags, which this
does.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
copy Si,Sk copy register Si to register Sk

Operand Values: Si any scalar register r0-r31.
Sk any scalar register r0-r31.

Condition Codes: z : set if the register is zero, cleared otherwise.
n : set if the register is negative, cleared otherwise.
c : unchanged.
v : cleared.

 Other condition codes are unchanged by this instruction.

PAGE 86 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

dec Decrement counter dec
Function Unit: RCU sub-instruction

Operation: c - 1 ⇒ c
Description: Decrement register rc0 or rc1 by 1. If the register is already zero it remains zero.

 This instruction is not encoded as a full instruction. Instead, either or both of these
decrement operations are encoded as a bit field in any register unit instruction. If
there is no other register unit instruction, the assembler will encode a special
dec_only form which has no other function besides encoding up to two decrement
instructions.

 The condition codes are valid, and may be tested, in the cycle after the decrement
instruction.

Assembler Syntax:
INSTRUCTION DESCRIPTION
0/16-bit forms
dec rc0 decrement register rc0, unless it is zero
dec rc1 decrement register rc1, unless it is zero

Condition Codes: c0z : set if rc0 is zero, cleared otherwise.
c1z : set if rc1 is zero, cleared otherwise.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 87

dotp Small Vector Dot Product dotp
Function Unit: MUL

Operation: Sum of products of (Small vector Source A * Small vector Source B)
 ⇒ Scalar Destination

Description: Four parallel 16x16 signed integer multiply operations are performed, followed
by three additions, to give the sum of the products of each of the four elements of
the small vectors. One of the sources is always a small vector. The other source
may either be another small vector or a scalar. The result is shifted as defined by
the instruction, and written to the scalar destination.

 The 32-bit products are summed, and the sum is then shifted as defined by the
instruction. Overflow, from the addition, is not detected.

 This operation completes in two clock cycles, so the result is not valid during the
following clock cycle. However, you cannot rely on the previous value still being
in the destination register in the following clock cycle, because if the MPE stalls
for any reason then it will be over-written.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
dotp Si,Vj,>>svshift,Sk form a small vector by repeating the 16 most significant bits of scalar register

Si four times, multiply it by all four elements of small vector Vj, sum the
products, shift the result by an amount determined by the svshift register, and
write the result to scalar Sk

dotp Si,Vj,>>#m,Sk form a small vector by repeating the 16 most significant bits of scalar register
Si four times, multiply it by all four elements of small vector Vj, sum the
products, shift the result by an amount determined by the immediate value
(legal values are {16,24,32,30}, see below), and write the result to scalar Sk

dotp Vi,Vj,>>svshift,Sk multiply all four elements of small vector Vi by all four elements of small
vector Vj, sum the products, shift the result by an amount determined by the
svshift register, and write the result to scalar Sk

dotp Vi,Vj,>>#m,Sk multiply all four elements of small vector Vi by all four elements of small
vector Vj, sum the products, shift the result by an amount determined by the
immediate value (legal values are {16,24,32,30}, see below), and write the
result to scalar Sk

PAGE 88 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

dotp Small Vector Dot Product dotp
…continued
Operand Values: Si any scalar register r0-r31. Bits 31-16 are used, bits 15-0 are ignored.

Sk any scalar register r0-r31.
Vi any vector register v0-v7, as a small-vector.
Vj any vector register v0-v7, as a small-vector.
>> the value encoded into #m, or encoded in the the svshift register,
 determines the final shift amount, as follows:
Encoding

for #m
Encoding
for svshift

 Description

16 0 the 32-bit sum of products value is shifted left by 16, filling with
zeros. This produces a 16.16 scalar result when the input small-
vector elements are considered to be in 16.0 format.

24 1 the 32-bit sum of products value is shifted left by 8, filling with
zeros. This produces an 8.24 scalar result when the input small-
vector elements are considered to be in 8.8 format.

32 2 the 32-bit sum of products value are used directly, and are not
shifted. This produces a 0.32 scalar result when the input small-
vector elements are considered to be in 0.16 format.

30 3 the 32-bit sum of products value is shifted left by 2, filling with
zeros. This produces a 2.30 scalar result when the input small-
vector elements are considered to be in 2.14 format.

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 89

eor Logical Exclusive OR eor
Function Unit: ALU

Operation: Scalar Exclusive-OR Scalar ⇒ Scalar Register
Description: Bit-wise logical exclusive-OR of two 32-bit sources, writing the result to a scalar

register.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
eor Si,Sk exclusive-OR Si with Sk, writing the result to Sk
eor #n,Sk exclusive-OR #n with Sk, writing the result to Sk -16 ≤ n ≤ 15
32-bit forms
eor Si,Sj,Sk exclusive-OR Si with Sj, writing the result to Sk
eor #n,Sj,Sk exclusive-OR #n with Sj, writing the result to Sk. -16 ≤ n ≤ 15
eor #n,<>#m,Sk exclusive-OR #n rotated right by #m, with Sk,

writing the result to Sk. May be used to mask in or
out, a bit field.

-16 ≤ n ≤ 15
-∞ ≤ m ≤ ∞

eor #n,>>Sj,Sk exclusive-OR #n logically shifted right by Sj, with
Sk, writing the result to Sk

-16 ≤ n ≤ 15
-32 ≤ Sj ≤ 31

eor Si,>>#m,Sk exclusive-OR Si logically shifted right by #m, with
Sk, writing the result to Sk

-16 ≤ m ≤ 15

eor Si,>>Sj,Sk ✻ exclusive-OR Si logically shifted right by Sj, with
Sk, writing the result to Sk

-32 ≤ Sj ≤ 31

eor Si,<>Sj,Sk ✻ exclusive-OR Si rotated right by Sj, with Sk,
writing the result to Sk

all Sj are valid

48-bit forms
eor #nnnn,Sk exclusive-OR #nnnn with Sk, writing the result to

Sk
-(2^31) ≤ nnnn ≤ (2^31)-1

64-bit forms
eor #nnnn,Sj,Sk exclusive-OR #nnnn with Sj, writing the result to

Sk
-(2^31) ≤ nnnn ≤ (2^31)-1

eor
#nnnn,>>Sj,Sk

exclusive-OR #nnnn logically shifted right by Sj,
with Sk, writing the result to Sk

-(2^31) ≤ nnnn ≤ (2^31)-1
-32 ≤ Sj ≤ 31

Restricted Forms: ✻ Instructions marked with an asterisk share a register file read port with other
function units. Only one of these instructions may be present in a given packet:
ECU jmp/jsr cc,(Si) | cc,(Si),nop
RCU mvr/addr Si,RI
ALU and/or/eor/ftst Si,>>Sj,Sk | Si,<>Sj,Sk
MUL mul Si,Sk,>>Sq,Sk | #n,Sk,>>Sq,Sk

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31. For shifts, bits 5-0 are used, bits 31-6 ignored.
Sk any scalar register r0-r31.
#n 5-bit immediate value, sign extended to 32 bits.

PAGE 90 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

eor Logical Exclusive OR eor
…continued

#nnnn 32-bit immediate value.
#m immediate shift or rotate value.
>> shifts are logical, right for positive values, left for negative values.
<> rotates are right for positive values, left for negative values.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : unchanged.
v : cleared.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 91

ftst Bit-Field Test ftst
Function Unit: ALU

Operation: Scalar Source A AND Scalar Source B ⇒ Flags
Description: Bit-wise logical AND of two 32-bit sources, without writing the result back to a

register. This instruction may be used to test a bit-range in any register, or to
perform a bit compare on two registers.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
ftst Si,Sj AND Si with Sj
ftst #n,Sj AND #n with Sj -16 ≤ n ≤ 15
ftst #n,<>#m,Sq AND #n rotated right by #m, with Sq -16 ≤ n ≤ 15

-∞ ≤ m ≤ ∞
ftst #n,>>Sj,Sq AND #n logically shifted right by Sj, with Sq -16 ≤ n ≤ 15

-32 ≤ Sj ≤ 31
ftst Si,>>#m,Sq AND Si logically shifted right by #m, with Sq -16 ≤ n ≤ 15
ftst Si,>>Sj,Sq ✻ AND Si logically shifted right by Sj, with Sq -32 ≤ Sj ≤ 31
ftst Si,<>Sj,Sq ✻ AND Si rotated right by Sj, with Sq all Sj are valid

64-bit forms
ftst #nnnn,Sj AND #nnnn with Sj -(2^31) ≤ nnnn ≤ (2^31)-1
ftst #nnnn,>>Sj,Sq AND #nnnn logically shifted right by Sj, with Sq -(2^31) ≤ nnnn ≤ (2^31)-1

-32 ≤ Sj ≤ 31

Restricted Forms: ✻ Instructions marked with an asterisk share a register file read port with other
function units. Only one of these instructions may be present in a given packet:
ECU jmp/jsr cc,(Si) | cc,(Si),nop
RCU mvr/addr Si,RI
ALU and/or/eor/ftst Si,>>Sj,Sk | Si,<>Sj,Sk
MUL mul Si,Sk,>>Sq,Sk | #n,Sk,>>Sq,Sk

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31. For shifts, bits 5-0 are used, bits 31-6 ignored.
Sq any scalar register r0-r31.
#n 5-bit immediate value, sign extended to 32 bits.
#nnnn 32-bit immediate value.
#m immediate shift or rotate value.
>> shifts are logical, right for positive values, left for negative values.
<> rotates are right for positive values, left for negative values.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : unchanged.
v : cleared.

 Other condition codes are unchanged by this instruction.

PAGE 92 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

halt Halt Operation halt
Function Unit: ECU

Operation: Halt program execution

Description: Halt the MPE, clearing the mpeGo bit in the mpectl register. When the MPE
stops, pcexec will contain the address of the packet that would otherwise have
executed if the halt instruction had not been present.

(In the unlikely event that the excepHaltEn_halt bit has been cleared in the
excephalten register, then a halt instruction will not actually halt the MPE.
Instead, the exception bit in the intsrc register will be set, and the MPE will
continue executing.)

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
halt halt program execution

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 93

jmp Jump to Absolute Address jmp
Function Unit: ECU

Operation: Conditional jump to an absolute address

Description: If the specified condition is true, then the jump is taken, otherwise the jump is not
taken. A taken jump which has a nop operand will force two ‘dead’ cycles after
executing the jump packet, then continue execution from the target address. A
taken jump which does not have a nop operand will have no ‘dead’ cycles—the
jump packet, the next two packets, and the packet at the target address will
execute on successive cycles (ignoring unrelated pipeline stalls). If a jump is not
taken, whether or not it has a nop operand, execution will continue with the next
packet.

 The two instruction packets after a packet containing a jump without a nop
operand are in what is known as the “delay slots” of the jump. If such a jump is
taken, any ECU instructions (bra, halt, jmp, jsr, rti, rts) in its delay slots will
not be evaluated. If the jump is not taken, the delay slots execute normally. This
allows multi-way jump decisions to be made in successive instruction packets.

 For a jmp to an immediate <label>, the programmer normally lets the assembler
choose the shortest form that will accomodate the target address.

Assembler Syntax:
INSTRUCTION DESCRIPTION TARGET ADDRESS
32-bit forms
jmp cc,(Si) ✻ If the cc condition is

true: execute the next two packets,
 then continue execution at address Si.
false: continue execution with the next packet.

32-bit absolute address

jmp cc,(Si),nop ✻ If the cc condition is
true: force two dead cycles,
 then continue execution at address Si.
false: continue execution with the next packet.

32-bit absolute address

jmp cc,<label> If the cc condition is
true: execute the next two packets,
 then continue execution at <label>.
false: continue execution with the next packet.

any address in the
first 16K bytes of
local IROM or IRAM

jmp cc,<label>,nop If the cc condition is
true: force two dead cycles,
 then continue execution at <label>.
false: continue execution with the next packet.

any address in the
first 16K bytes of
local IROM or IRAM

64-bit forms
jmp cc,<label> If the cc condition is

true: execute the next two packets,
 then continue execution at <label>.
false: continue execution with the next packet.

32-bit absolute address

jmp cc,<label>,nop If the cc condition is
true: force two dead cycles,
 then continue execution at <label>.
false: continue execution with the next packet.

32-bit absolute address

PAGE 94 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

jmp Jump to Absolute Address jmp
…continued
Restricted Forms: ✻ Instructions marked with an asterisk share a register file read port with other

function units. Only one of these instructions may be present in a given packet:
ECU jmp/jsr cc,(Si) | cc,(Si),nop
RCU mvr/addr Si,RI
ALU and/or/eor/ftst Si,>>Sj,Sk | Si,<>Sj,Sk
MUL mul Si,Sk,>>Sq,Sk | #n,Sk,>>Sq,Sk

Operand Values: Si is any any scalar register r0-r31, as an absolute 32-bit address.

 <label> is resolved to an address by the assembler/linker. This target address is
always an even number since instructions are on 16-bit boundaries.

 cc may take on any of the following values (if not specied, t is assumed):
cc mnemonic condition test
ne Not equal /z

eq Equal z

lt Less than (n./v) + (/n.v)

le Less than or equal z + (n./v) + (/n.v)

gt Greater than (n.v./z) + (/n./v./z)

ge Greater than or equal (n.v) + (/n./v)

c0ne rc0 not equal to zero /c0z

c1ne rc1 not equal to zero /c1z

c0eq rc0 equal to zero c0z

c1eq rc1 equal to zero c1z

cc (hs) Carry clear (High or same) /c

cs (lo) Carry set (Low) c

vc Overflow clear /v

vs Overflow set v

mvc Multiply overflow clear /mv

mvs Multiply overflow set mv

hi High /c./z

ls Low or same c + z

pl Plus /n

mi Minus n

t True 1

modmi modulo RI was < zero modmi

modpl modulo RI was >= zero /modmi

modge modulo RI was >= range modge

modlt modulo RI was < range /modge

cf0lo Coprocessor flag 0 low /cf0

cf0hi Coprocessor flag 0 high cf0

cf1lo Coprocessor flag 1 low /cf1

cf1hi Coprocessor flag 1 high cf1

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 95

jsr Jump to Subroutine at Absolute Address jsr
Function Unit: ECU

Operation: Conditional jump to an absolute address, also copying a return address to rz

Description: If the specified condition is true, then the jsr jump is taken, otherwise the jump is
not taken. A taken jump which has a nop operand will force two ‘dead’ cycles
after executing the jump packet, then continue execution from the target address.
A taken jump which does not have a nop operand will have no ‘dead’ cycles—the
jump packet, the next two packets, and the packet at the target address will
execute on successive cycles (ignoring unrelated pipeline stalls). If a jump is not
taken, whether or not it has a nop operand, execution will continue with the next
packet.

 The two instruction packets after a packet containing a jump without a nop
operand are in what is known as the “delay slots” of the jump. If such a jump is
taken, any ECU instructions (bra, halt, jmp, jsr, rti, rts) in its delay slots will
not be evaluated. If the jump is not taken, the delay slots execute normally. This
allows multi-way jump decisions to be made in successive instruction packets.

 When a jsr is taken, the address of the next unexecuted instruction is copied to the
rz register, so that a later rts instruction can return to the proper address.

 For a jsr to an immediate <label>, the programmer normally lets the assembler
choose the shortest form that will accomodate the target address.

Assembler Syntax:
INSTRUCTION DESCRIPTION TARGET ADDRESS
32-bit forms
jsr cc,(Si) ✻ If the cc condition is

true: copy pcfetchnext to rz, execute the next two
 packets, continue execution at address Si.
false: continue execution with the next packet.

32-bit absolute address

jsr cc,(Si),nop ✻ If the cc condition is
true: copy pcroute into rz, force two dead cycles,
 then continue execution at address Si.
false: continue execution with the next packet.

32-bit absolute address

jsr cc,<label> If the cc condition is
true: copy pcfetchnext to rz, execute the next two
 packets, then continue execution at <label>.
false: continue execution with the next packet.

any address in the
first 16K bytes of
local IROM or IRAM

jsr cc,<label>,nop If the cc condition is
true: copy pcroute into rz, force two dead cycles,
 then continue execution at <lable>.
false: continue execution with the next packet.

any address in the
first 16K bytes of
local IROM or IRAM

64-bit forms
jsr cc,<label> If the cc condition is

true: copy pcfetchnext to rz, execute the next two
 packets, then continue execution at <label>.
false: continue execution with the next packet.

32-bit absolute address

PAGE 96 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

jsr Jump to Subroutine at Absolute Address jsr
…continued
INSTRUCTION DESCRIPTION TARGET ADDRESS
64-bit forms
jsr cc,<label>,nop If the cc condition is

true: copy pcroute into rz, force two dead cycles,
 then continue execution at <lable>.
false: continue execution with the next packet.

32-bit absolute address

Restricted Forms: ✻ Instructions marked with an asterisk share a register file read port with other

function units. Only one of these instructions may be present in a given packet:
ECU jmp/jsr cc,(Si) | cc,(Si),nop
RCU mvr/addr Si,RI
ALU and/or/eor/ftst Si,>>Sj,Sk | Si,<>Sj,Sk
MUL mul Si,Sk,>>Sq,Sk | #n,Sk,>>Sq,Sk

Operand Values: Si is any any scalar register r0-r31, as an absolute 32-bit address.

 <label> is resolved to an address by the assembler/linker. This target address is
always an even number since instructions are on 16-bit boundaries.

 pcfetchnext is the value that would have gone into the pcfetch register after the
jump packet finished executing, had the jump not been taken.

 cc may take on any of the following values (if not specied, t is assumed):
cc mnemonic condition test
ne Not equal /z

eq Equal z

lt Less than (n./v) + (/n.v)

le Less than or equal z + (n./v) + (/n.v)

gt Greater than (n.v./z) + (/n./v./z)

ge Greater than or equal (n.v) + (/n./v)

c0ne rc0 not equal to zero /c0z

c1ne rc1 not equal to zero /c1z

c0eq rc0 equal to zero c0z

c1eq rc1 equal to zero c1z

cc (hs) Carry clear (High or same) /c

cs (lo) Carry set (Low) c

vc Overflow clear /v

vs Overflow set v

mvc Multiply overflow clear /mv

mvs Multiply overflow set mv

hi High /c./z

ls Low or same c + z

pl Plus /n

mi Minus n

t True 1

modmi modulo RI was < zero modmi

modpl modulo RI was >= zero /modmi

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 97

jsr Jump to Subroutine at Absolute Address jsr
…continued

cc mnemonic condition test
modge modulo RI was >= range modge

modlt modulo RI was < range /modge

cf0lo Coprocessor flag 0 low /cf0

cf0hi Coprocessor flag 0 high cf0

cf1lo Coprocessor flag 1 low /cf1

cf1hi Coprocessor flag 1 high cf1

Condition Codes: Unchanged by this instruction.

PAGE 98 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ld_b Load byte data into register ld_b
Function Unit: MEM

Operation: Byte Data ⇒ Register
Description: Load a byte value into bits 31-24 of a scalar register, setting bits 23-0 to zero. The

effective address for the load may be on any byte boundary.

The load instruction completes in two cycles, which means the loaded data is
guaranteed to be valid for use by instructions in the second packet after the packet
containing the load instruction. During execution of the first packet after the load
packet, the contents of the target register cannot be relied upon and must not be
referenced.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
ld_b (Si),Sk load byte from address Si into register Sk
ld_b <label>,Sk load byte from address <label> into register Sk
ld_b (xy),Sk load byte from bilinear address (xy) into register Sk (only data type 8 is valid)
ld_b (uv),Sk load byte from bilinear address (uv) into register Sk (only data type 8 is valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.
Sk any scalar register r0-r31.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<label> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a byte
 boundary within an 11-bit offset in bytes (bits 10 to 0 of the address)
 above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 99

ld_p Load pixel data into registers ld_p
Function Unit: MEM

Operation: Packed Pixel Data ⇒ First 3 scalars of a Vector Register
Description: Load a pixel value into the first three scalars (three lowest numbered) of a vector

register. See the ‘MPE Data Types’ section for a full discussion of the behavior of
ld_p for each data type. The effective address for the load must be on the selected
pixel size boundary, with the appropriate number of least significant bits equal to
zero.

 The load instruction completes in two cycles, which means the loaded data is
guaranteed to be valid for use by instructions in the second packet after the packet
containing the load instruction. During execution of the first packet after the load
packet, the contents of the target register cannot be relied upon and must not be
referenced.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
ld_p (Si),Vk load pixel from address Si into register Vk, transforming the data according to the

settings in the linpixctl register (only data types 0 to 6 are valid)
ld_p <label>,Vk load pixel from address <label> into register Vk, transforming the data according to the

settings in the linpixctl register (only data types 0 to 6 are valid)
ld_p (xy),Vk load pixel from bilinear address (xy) into register Vk, transforming the data according to

the settings in the xyctl register (only data types 0 to 6 are valid)
ld_p (uv),Vk load pixel from bilinear address (uv) into register Vk, transforming the data according to

the settings in the uvctl register (only data types 0 to 6 are valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.
Vk any vector register v0-v7, as a pixel value.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<label> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 word boundary within an 11-bit offset in words (bits 11 to 1 of the
 address) above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

PAGE 100 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ld_pz Load pixel plus Z data into registers ld_pz
Function Unit: MEM

Operation: Packed Pixel plus Z Data ⇒ Vector Register
Description: Load a pixel value with Z into the four scalars of a vector register. See the ‘MPE

Data Types’ section for a full discussion of the behavior of ld_pz for each data
type. The effective address for the load must be on the selected pixel size
boundary, with the appropriate number of least significant bits equal to zero.

 The load instruction completes in two cycles, which means the loaded data is
guaranteed to be valid for use by instructions in the second packet after the packet
containing the load instruction. During execution of the first packet after the load
packet, the contents of the target register cannot be relied upon and must not be
referenced.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
ld_pz (Si),Vk load pixel plus Z from address Si into register Vk, transforming the data according to

the settings in the linpixctl register (only data types 0 to 6 are valid)
ld_pz <label>,Vk load pixel plus Z from address <label> into register Vk, transforming the data

according to the settings in the linpixctl register (only data types 0 to 6 are valid)
ld_pz (xy),Vk load pixel plus Z from bilinear address (xy) into register Vk, transforming the data

according to the settings in the xyctl register (only data types 0 to 6 are valid)
ld_pz (uv),Vk load pixel plus Z from bilinear address (uv) into register Vk, transforming the data

according to the settings in the uvctl register (only data types 0 to 6 are valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.
Vk any vector register v0-v7, as a pixel plus Z value.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<label> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 word boundary within an 11-bit offset in words (bits 11 to 1 of the
 address) above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 101

ld_s Load scalar data into register ld_s
Function Unit: MEM

Operation: Scalar Data ⇒ Register
Description: Load a scalar value into a scalar register. The effective address for the load may

be on any scalar boundary, and the least significant 2 bits will be ignored.

 The load instruction completes in two cycles, which means the loaded data is
guaranteed to be valid for use by instructions in the second packet after the packet
containing the load instruction. During execution of the first packet after the load
packet, the contents of the target register cannot be relied upon and must not be
referenced.

The ld_io instruction is a synonym for ld_s. The ld_io form may be found in
some old software written when it used to be a separate form.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
ld_s (Si),Sk load scalar from address Si, into register Sk
ld_s <labelA>,Sk load scalar from address <labelA>, into register Sk
32-bit forms
ld_s <labelB>,Sk load scalar from address <labelB>, into register Sk
ld_s (xy),Sk load scalar from bilinear address (xy), into register Sk (only data type A is valid)
ld_s (uv),Sk load scalar from bilinear address (uv), into register Sk (only data type A is valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.

Sk any scalar register r0-r31.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<labelA> is resolved to an address by the assembler/linker. The
instruction
 encoding for this immediate address value restricts it to being on a
 vector boundary within a 5-bit offset in vectors (bits 8 to 4 of the
 address) above the following base value:
 $2050_0000 base of local control registers

 <labelB> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 scalar boundary within a 11-bit offset in scalars (bits 12 to 2 of the
 address) above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

PAGE 102 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ld_sv Load small vector data into register ld_sv
Function Unit: MEM

Operation: Packed Small Vector Data ⇒ Vector Register
Description: Load a small-vector value into a vector register. The effective address for the load

may be on any 8-byte boundary, and the least significant 3 bits will be ignored.

 The load instruction completes in two cycles, which means the loaded data is
guaranteed to be valid for use by instructions in the second packet after the packet
containing the load instruction. During execution of the first packet after the load
packet, the contents of the target register cannot be relied upon and must not be
referenced.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
ld_sv (Si),Vk load small-vector from address Si, into register Vk
ld_sv <label>,Vk load small-vector from address <label>, into register Vk
ld_sv (xy),Vk load small-vector from bilinear address (xy), into register Vk (only data type C is valid)
ld_sv (uv),Vk load small-vector from bilinear address (uv), into register Vk (only data type C is valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.

Vk any vector register v0-v7.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<label> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 8-byte boundary within a 11-bit offset in scalars (bits 13 to 3 of the
 address) above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 103

ld_v Load vector data into register ld_v
Function Unit: MEM

Operation: Vector Data ⇒ Vector Register
Description: Load a vector value into a vector register. The effective address for the load may

be on any 16-byte boundary, and the least significant 4 bits will be ignored.

 The load instruction completes in two cycles, which means the loaded data is
guaranteed to be valid for use by instructions in the second packet after the packet
containing the load instruction. During execution of the first packet after the load
packet, the contents of the target register cannot be relied upon and must not be
referenced.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
ld_v (Si),Vk load vector from address Si, into register Vk
ld_v <label>,Vk load vector from address <label>, into register Vk
ld_v (xy),Vk load vector from bilinear address (xy), into register Vk (only data type D is valid)
ld_v (uv),Vk load vector from bilinear address (uv), into register Vk (only data type D is valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.

Vk any vector register v0-v7.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<label> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 16-byte boundary within a 11-bit offset in scalars (bits 14 to 4 of the
 address) above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

PAGE 104 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ld_w Load word data into scalar register ld_w
Function Unit: MEM

Operation: Word Data ⇒ Register
Description: Load a word value into bits 31-16 of a scalar register, setting bits 15-0 to zero.

The effective address for the load may be on any 2-byte boundary, and the least
significant bit will be ignored.

 The load instruction completes in two cycles, which means the loaded data is
guaranteed to be valid for use by instructions in the second packet after the packet
containing the load instruction. During execution of the first packet after the load
packet, the contents of the target register cannot be relied upon and must not be
referenced.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
ld_w (Si),Sk load word from address Si, into register Sk
ld_w <label>,Sk load word from address <label>, into register Sk
ld_w (xy),Sk load word from bilinear address (xy), into register Sk (only data type 9 is valid)
ld_w (uv),Sk load word from bilinear address (uv), into register Sk (only data type 9 is valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.

Sk any scalar register r0-r31.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<label> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 2-byte boundary within a 11-bit offset in scalars (bits 11 to 1 of the
 address) above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 105

ls Logical Shift ls
Function Unit: ALU

Operation: Scalar Source A >> Source B ⇒ Scalar Destination
Description: Logically shift Source A either left or right by Source B, setting flags

appropriately, and writing the result to destination. Only the bottom six bits of
Source B are used, the high-order 26 bits are ignored. A positive shift value
implies a right shift, a negative shift value implies a left shift

 For right shifts, zero is shifted into the most significant bit, as shown below:

 SOURCE A0 C

31 0

Shift into carry is always from bit 0, in other words, this flag-setting function is
only valid for a shift by one. It may be used for any shift, but will always be the
contents of bit 0.

For left shifts, a zero is shifted in from the right, as shown below:

 SOURCE AC 0

31 0

Shift into carry is always from bit 31, in other words, this flag-setting function is
only valid for a shift by one. It may be used for any shift, but will always be the
contents of bit 31.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
ls >>Sj,Si,Sk logical shift right of Si by Sj, writing the result to Sk -32 ≤ Sj ≤ 31

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31. Bits 5-0 are used, bits 31-6 are ignored.
Sk any scalar register r0-r31.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : for right shifts (Sj ≥ 0), c takes the value of bit 0 of Source A;
 for left shifts (Sj < 0), c takes the value of bit 31 of Source A.
v : cleared.

 Other condition codes are unchanged by this instruction.

PAGE 106 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

lsl Logical Shift Left lsl
Function Unit: ALU

Operation: Scalar Source A << Source B ⇒ Scalar Destination
Description: Logically shift left Source A by Source B, setting flags appropriately, and writing

the result to destination. Arithmetic and logical shifts are identical for a left shift,
and this is the same instruction as asl. A zero is shifted in from the right, as shown
below:

 SOURCE AC 0

31 0

Shift into carry is always from bit 31, in other words, this flag-setting function is
only valid for a shift by one. It may be used for any shift, but will always be the
contents of bit 31.

A register shift-control version of lsl is available through the ls instruction.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
lsl #m,Sk logical shift left of Sk by #m, writing the result to Sk 0 ≤ m ≤ 31
32-bit forms
lsl #m,Si,Sk logical shift left of Si by #m, writing the result to Sk 0 ≤ m ≤ 31

Operand Values: Si any scalar register r0-r31.
Sk any scalar register r0-r31.
#m immediate shift value.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : bit 31 of source A.
v : cleared.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 107

lsr Logical Shift Right lsr
Function Unit: ALU

Operation: Scalar Source A >> Source B ⇒ Scalar Destination
Description: Logically shift right Source A by Source B, setting flags appropriately, and

writing the result to destination. A zero is shifted into the most significant bit, as
shown below:

 SOURCE A0 C

31 0

Shift into carry is always from bit 0, in other words, this flag-setting function is
only valid for a shift by one. It may be used for any shift, but will always be the
contents of bit 0.

A register shift-control version of lsr is available through the ls instruction.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
lsr #m,Sk logical shift right of Sk by #m, writing the result to Sk 0 ≤ m ≤ 31
32-bit forms
lsr #m,Si,Sk logical shift right of Si by #m, writing the result to Sk 0 ≤ m ≤ 31

Operand Values: Si any scalar register r0-r31.
Sk any scalar register r0-r31.
#m immediate shift value.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : bit 0 of source A.
v : cleared.

 Other condition codes are unchanged by this instruction.

PAGE 108 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

mirror Reverse the Bits of a Register mirror
Function Unit: MEM

Operation: Mirror (Scalar Source) ⇒ Scalar Destination
Description: Move scalar data from register to register, reversing the bit ordering. Bit 31 goes

to bit 0, bit 30 to bit 1, and so on to bit 0 going to bit 31.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
mirror Sj,Sk mirror scalar data from Sj, writing the result to Sk

Operand Values: Sj any scalar register r0-r31.
Sk any scalar register r0-r31.

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 109

modulo Index Register Modulo Operation modulo
Function Unit: RCU

Operation: IF (Index >= Range) Index – Range ⇒ Index
ELSE IF (Index < 0) Index + Range ⇒ Index
ELSE Index ⇒ Index

Description: Compare the integer part of the specified index register to its corresponding range
from the xyrange or uvrange register, and also compare it to zero. If it is greater
than or equal to the range, then subtract the range value from the index register. If
it is less than zero, then add the range value to the index register. The fractional
bits of the index register are unchanged by this instruction.

 The range instruction performs the same operation as modulo, except that it only
affects the condition code flags, without changing the index register.

 Up to two DEC instructions may be encoded as bit-fields in this instruction, so
that up to three RCU instructions may be executed in one cycle.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
modulo RI Compare RI to its corresponding range register, subtracting the range if it is greater. Add

the range if RI is less than zero.

Operand Values: RI is any index register rx, ry, ru, or rv. The value is considered to be a 16.16
number, and the xyctl and uvctl registers are ignored.

Condition Codes: modmi : set if RI was less then zero, cleared otherwise.
modge : set if RI was greater than or equal to the range, cleared otherwise.

 Other condition codes are unchanged by this instruction.

PAGE 110 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

msb Find the Number of Significant Bits msb
Function Unit: ALU

Operation: sigbits(Scalar Source) ⇒ Scalar Destination
Description: Find the number of significant bits in the Scalar Source, and write the result to a

destination scalar register.

 For positive numbers:
 The number of significant bits is in the range 0-31. The significant bits function,

sigbits(), is defined as the bit position of the left-most 1, plus 1. If the number is 0
then the result is 0.

 For negative numbers:

 The number of significant bits is in the range 0-31. The significant bits function,
sigbits(), is defined as the bit position of the left-most 0, plus 1. If the number is -
1 then the result is 0.

 The number of significant bits therefore lies in the range 0 to 31.

 In logical terms, this operation can be considered as returning the bit position of
the left-most bit which is not the same as the top bit

 Note – the behavior of this function for negative numbers may not be what you
require for two’s complement operations, in which case you should ABS the
value before applying MSB. Note in particular that for powers of 2 it is not
symmetrical; plus two will return 2, but minus two will return 1.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
msb Si,Sk write sigbits(Si) to Sk

Operand Values: Si any scalar register r0-r31.
Sk any scalar register r0-r31.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : unchanged.
c : unchanged.
v : unchanged.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 111

mul Scalar Integer Multiplication mul
Function Unit: MUL

Operation: Scalar Source A * Scalar Source B ⇒ Scalar Destination
Description: Signed integer multiply of two 32-bit scalar values, shifting the 64-bit product as

specified, and storing the bottom thirty-two bits of the shifted result in the
destination register.

 The shift range is from +63 to -32, with positive numbers implying a right shift of
the 64 bit multiplier result. Thus 32 bits are extracted, sign extended and rounded
down (i.e. LSBs are truncated, and not rounded). If a negative shift is used (i.e. a
left shift of the accumulator), then zeros are shifted in from the right.

 This operation completes in two clock cycles, so the result is not valid during the
following clock cycle. However, you cannot rely on the previous value still being
in the destination register in the following clock cycle, because if the MPE stalls
for any reason then it will be over-written.

 The multiply overflow flag is valid at the same time, and subject to the same
restrictions, as the multiply result.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
mul Si,Sk,>>acshift,Sk multiply Si and Sk, arithmetically shift the product

by the acshift register value, and write the result to
Sk

32-bit forms
mul Si,Sj,>>acshift,Sk multiply Si and Sj, arithmetically shift the product

by the acshift register value, and write the result to
Sk

mul Si,Sk,>>#m,Sk multiply Si and Sk, arithmetically shift the product
by #m, and write the result to Sk

-32 ≤ m ≤ 63

mul Si,Sk,>>Sq,Sk ✻ multiply Si and Sk, arithmetically shift the product
by Sq, and write the result to Sk

-32 ≤ Sq ≤ 63

mul #n,Sj,>>acshift,Sk multiply #n and Sj, arithmetically shift the product
by the acshift register value, and write the result to
Sk

0 ≤ n ≤ 31

mul #n,Sk,>>#m,Sk multiply #n and Sk, arithmetically shift the product
by #m, and write the result to Sk

0 ≤ n ≤ 31
-32 ≤ m ≤ 63

mul #n,Sk,>>Sq,Sk ✻ multiply #n and Sk, arithmetically shift the product
by Sq, and write the result to Sk

0 ≤ n ≤ 31
-32 ≤ Sq ≤ 63

Restricted Forms: ✻ Instructions marked with an asterisk share a register file read port with other
function units. Only one of these instructions may be present in a given packet:
ECU jmp/jsr cc,(Si) | cc,(Si),nop
RCU mvr/addr Si,RI
ALU and/or/eor/ftst Si,>>Sj,Sk | Si,<>Sj,Sk
MUL mul Si,Sk,>>Sq,Sk | #n,Sk,>>Sq,Sk

PAGE 112 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

mul Scalar Integer Multiplication mul
…continued
Operand Values: Si any scalar register r0-r31.

Sj any scalar register r0-r31.
Sq any scalar register r0-r31. Bits 6-0 are used, bits 31-7 are ignored.
Sk any scalar register r0-r31.
#n 5-bit immediate value, zero extended to 32 bits.
#m immediate shift value.
acshift shift value from the acshift register.
>> shifts are arithmetic, right for positive values, left for negative values.

Condition Codes: mv : set if there are any significant two’s complement bits above the 32-bit
 extracted result, cleared otherwise. The mv result is valid for shift values in
 the range 0 to 63, and is otherwise undefined.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 113

mul_p Pixel Integer Multiplication mul_p
Function Unit: MUL

Operation: Pixel Source A * Pixel Source B ⇒ Pixel Destination
Description: Three parallel 16x16 signed integer multiply operations are performed, giving

three 32-bit products. One of the sources is always a pixel. The other source may
either be another pixel, or a scalar, or registers ru or rv. The result is shifted left
as defined by the instruction, and written to the destination pixel.

 This instruction is identical in operation to mul_sv, with the exception that only
elements 0-2 of the small vector are changed, the fourth element being entirely
unchanged by this instruction.

 The ru and rv forms of this are specifically useful for linear interpolation
functions, such as anti-aliased textures, and tri-linear interpolation.

 This operation completes in two clock cycles, so the result is not valid during the
following clock cycle. However, you cannot rely on the previous value still being
in the destination register in the following clock cycle, because if the MPE stalls
for any reason then it will be over-written.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
mul_p Si,Vj,>>svshift,Vk form a pixel by repeating the 16 most significant bits of scalar register Si

three times, multiply it by all three elements of pixel Vj, shift the products
by the amount determined by the svshift register, and write the result to
pixel Vk

mul_p Si,Vj,>>#m,Vk form a pixel by repeating the 16 most significant bits of scalar register Si
three times, multiply it by all three elements of pixel Vj, shift the products
by the amount determined by the immediate value (legal values are
{16,24,32,30}, see below), and write the result to pixel Vk

mul_p ru,Vj,>>svshift,Vk form a pixel by repeating the 14 most significant fractional bits of index
register ru three times, multiply it by all three elements of pixel Vj, shift the
products by the amount determined by the svshift register, and write the
result to pixel Vk

mul_p ru,Vj,>>#m,Vk form a pixel by repeating the 14 most significant fractional bits of index
register ru three times, multiply it by all three elements of pixel Vj, shift the
products by the amount determined by the immediate value (legal values are
{16,24,32,30}, see below), and write the result to pixel Vk

mul_p rv,Vj,>>svshift,Vk form a pixel by repeating the 14 most significant fractional bits of index
register rv three times, multiply it by all three elements of pixel Vj, shift the
products by the amount determined by the svshift register, and write the
result to pixel Vk

mul_p rv,Vj,>>#m,Vk form a pixel by repeating the 14 most significant fractional bits of index
register rv three times, multiply it by all three elements of pixel Vj, shift the
products by the amount determined by the immediate value (legal values are
{16,24,32,30}, see below), and write the result to pixel Vk

PAGE 114 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

mul_p Pixel Integer Multiplication mul_p
…continued
INSTRUCTION DESCRIPTION
32-bit forms
mul_p Vi,Vj,>>svshift,Vk multiply all three elements of pixel Vi by all three elements of pixel Vj, shift

the products by the amount determined by the svshift register, and write the
result to pixel Vk

mul_p Vi,Vj,>>#m,Vk multiply all three elements of pixel Vi by all three elements of pixel Vj, shift
the products by the amount determined by the immediate value (legal values
are {16,24,32,30}, see below), and write the result to pixel Vk

Operand Values: Si any scalar register r0-r31. Bits 31-16 are used, bits 15-0 are ignored.

ru,rv the most significant 14 bits of the fractional part of index register ru or rv
 are combined with 2 leading zeroes to create a positive 2.14 number.
 The position of the binary point in ru and rv is determined by the
 uv_mipmap field of the uvctl register (only values 0-4 are supported).
Vi any vector register v0-v7, as a pixel.
Vj any vector register v0-v7, as a pixel.
Vk any vector register v0-v7, as a pixel.
>> the value encoded into #m, or encoded in the the svshift register,
 determines the final shift amount, as follows:
Encoding

for #m
Encoding
for svshift

 Description

16 0 the 32-bit product values are shifted left by 16, filling with
zeros. This produces 16.16 pixel results when the input pixel
elements are considered to be in 16.0 format.

24 1 the 32-bit product values are shifted left by 8, filling with zeros.
This produces 8.24 pixel results when the input pixel elements
are considered to be in 8.8 format.

32 2 the 32-bit product values are used directly, and are not shifted.
This produces 0.32 pixel results when the input pixel elements
are considered to be in 0.16 format.

30 3 the 32-bit product values are shifted left by 2, filling with zeros.
This produces 2.30 pixel results when the input pixel elements
are considered to be in 2.14 format.

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 115

mul_sv Small Vector Integer Multiplication mul_sv
Function Unit: MUL

Operation: Small vector Source A * Small vector Source B ⇒ Vector Destination
Description: Four parallel 16x16 signed integer multiply operations are performed, giving four

32-bit products in a vector register. One of the sources is always a small vector.
The other source may either be another small vector, or a scalar, or registers ru or
rv. The result is shifted left as defined by the instruction, and written to the
destination vector.

 The ru and rv forms of this are specifically useful for linear interpolation
functions, such as anti-aliased textures, and tri-linear interpolation.

 This operation completes in two clock cycles, so the result is not valid during the
following clock cycle. However, you cannot rely on the previous value still being
in the destination register in the following clock cycle, because if the MPE stalls
for any reason then it will be over-written.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
mul_sv Vi,Vk,>>svshift,Vk multiply each element of small vector Vi by the corresponding element of

Vj, shift the products by the amount determined by the svshift register, and
write the result to the vector Vk.

32-bit forms
mul_sv Si,Vj,>>svshift,Vk form a small-vector by repeating the 16 most significant bits of scalar

register Si four times, multiply it by all four elements of small-vector Vj,
shift the products by the amount determined by the svshift register, and
write the result to small-vector Vk

mul_sv Si,Vj,>>#m,Vk form a small-vector by repeating the 16 most significant bits of scalar
register Si four times, multiply it by all four elements of small-vector Vj,
shift the products by the amount determined by the immediate value (legal
values are {16,24,32,30}, see below), and write the result to small-vector
Vk

mul_sv ru,Vj,>>svshift,Vk form a small-vector by repeating the 14 most significant fractional bits of
index register ru four times, multiply it by all four elements of small-vector
Vj, shift the products by the amount determined by the svshift register, and
write the result to small-vector Vk

mul_sv ru,Vj,>>#m,Vk form a small-vector by repeating the 14 most significant fractional bits of
index register ru four times, multiply it by all four elements of small-vector
Vj, shift the products by the amount determined by the immediate value
(legal values are {16,24,32,30}, see below), and write the result to small-
vector Vk

mul_sv rv,Vj,>>svshift,Vk form a small-vector by repeating the 14 most significant fractional bits of
index register rv four times, multiply it by all four elements of small-vector
Vj, shift the products by the amount determined by the svshift register, and
write the result to small-vector Vk

PAGE 116 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

mul_sv Small Vector Integer Multiplication mul_sv
…continued
INSTRUCTION DESCRIPTION
32-bit forms
mul_sv rv,Vj,>>#m,Vk form a small-vector by repeating the 14 most significant fractional bits of

index register rv four times, multiply it by all four elements of small-vector
Vj, shift the products by the amount determined by the immediate value
(legal values are {16,24,32,30}, see below), and write the result to small-
vector Vk

mul_sv Vi,Vj,>>svshift,Vk multiply all four elements of small-vector Vi by all four elements of small-
vector Vj, shift the products by the amount determined by the svshift
register, and write the result to small-vector Vk

mul_sv Vi,Vj,>>#m,Vk multiply all four elements of small-vector Vi by all four elements of small-
vector Vj, shift the products by the amount determined by the immediate
value (legal values are {16,24,32,30}, see below), and write the result to
small-vector Vk

Operand Values: Si any scalar register r0-r31. Bits 31-16 are used, bits 15-0 are ignored.
ru,rv the most significant 14 bits of the fractional part of index register ru or rv
 are combined with 2 leading zeroes to create a positive 2.14 number.
 The position of the binary point in ru and rv is determined by the
 uv_mipmap field of the uvctl register (only values 0-4 are supported).
Vi any vector register v0-v7, as a small-vector.
Vj any vector register v0-v7, as a small-vector.
Vk any vector register v0-v7, as a small-vector.
>> the value encoded into #m, or encoded in the the svshift register,
 determines the final shift amount, as follows:
Encoding

for #m
Encoding
for svshift

 Description

16 0 the 32-bit product values are shifted left by 16, filling with
zeros. This produces 16.16 small-vector results when the input
small-vector elements are considered to be in 16.0 format.

24 1 the 32-bit product values are shifted left by 8, filling with zeros.
This produces 8.24 small-vector results when the input small-
vector elements are considered to be in 8.8 format.

32 2 the 32-bit product values are used directly, and are not shifted.
This produces 0.32 small-vector results when the input small-
vector elements are considered to be in 0.16 format.

30 3 the 32-bit product values are shifted left by 2, filling with zeros.
This produces 2.30 small-vector results when the input small-
vector elements are considered to be in 2.14 format.

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 117

mv_s Move Scalar Data in Register File mv_s
Function Unit: MEM

Operation: Scalar Source ⇒ Scalar Destination
Description: Move scalar data

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
mv_s Sj,Sk move scalar data from register Sj into register Sk
mv_s #n,Sk move #n into register Sk -16 ≤ n ≤ 15
32-bit forms
mv_s #nnn,Sk move #nnn into register Sk -2048 ≤ nnn ≤ 2047
48-bit forms
mv_s #nnnn,Sk move #nnnn into register Sk -(2^31) ≤ nnnn ≤ (2^31)-1

Operand Values: Sj any scalar register r0-r31.
Sk any scalar register r0-r31.
#n 5-bit immediate value, sign extended to 32 bits.
#nnn 12-bit immediate value, sign extended to 32 bits.
#nnnn 32-bit immediate value.

Condition Codes: Unchanged by this instruction.

PAGE 118 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

mv_v Move Vector Data in Register File mv_v
Function Unit: MEM

Operation: Vector Source ⇒ Vector Destination
Description: Move vector data from register to register

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
mv_v Vj,Vk move vector data from register Vj into register Vk

Operand Values: Vj any vector register v0-v7.

Vk any vector register v0-v7.

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 119

mvr Move Scalar Data to Index Register mvr
Function Unit: RCU

Operation: Scalar Source ⇒ Index Register
Description: Move scalar data to RCU index register.

 Up to two dec instructions may also be encoded as bit-fields in this instruction, so
that up to three register unit operations may be executed in one cycle.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
mvr Sj,RI move data from register Sj into index register RI
48-bit forms
mvr #nnnn,RI move #nnnn into register RI -(2^31) ≤ nnnn ≤ (2^31)-1

Operand Values: Sj any scalar register r0-r31.
RI index register rx,ry,ru,rv
#nnnn 32-bit immediate value.

Condition Codes: Unchanged by this instruction.

PAGE 120 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

neg Negate neg
Function Unit: ALU

Operation: Zero minus Scalar Destination ⇒ Scalar Destination
Description: Subtract the destination value from zero, and write the result to the destination

register. This is a short form of sub Sk,#0,Sk.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
neg Sk subtract Sk from zero, writing the result to Sk

Operand Values: Sk is any scalar register r0-r31.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : set if there was a borrow out of the subtraction, cleared otherwise.
v : set if there was signed arithmetic overflow (sign is invalid), cleared otherwise.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 121

nop Null Operation nop
Function Unit: none

Operation: Null Operation

Description: Do nothing.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
nop

Condition Codes: Unchanged by this instruction.

PAGE 122 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

not Logical Complement not
Function Unit: ALU

Operation: Scalar Destination exclusive-OR $FFFFFFFF ⇒ Scalar Destination
Description: Logical complement of all the bits of the destination , and write the result to the

destination register.

 This instruction is equivalent to the instruction “eor #-1,Sk”.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
not Sk logical complement of Sk, writing the result to Sk

Operand Values: Sk is any scalar register r0-r31.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : unchanged.
v : cleared.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 123

or Logical OR or
Function Unit: ALU

Operation: Scalar Source A OR Scalar Source B ⇒ Scalar Destination
Description: Bit-wise logical inclusive OR of two 32-bit sources, writing the result to a scalar

register.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
or Si,Sk OR Si with Sk, writing the result to Sk
32-bit forms
or Si,Sj,Sk OR Si with Sj, writing the result to Sk
or #n,Sj,Sk OR #n with Sj, writing the result to Sk -16 ≤ n ≤ 15
or #n,<>#m,Sk OR #n rotated right by #m, with Sk, writing the

result to Sk. May be used to mask in or out, a bit
field.

-16 ≤ n ≤ 15
-∞ ≤ m ≤ ∞

or #n,>>Sj,Sk OR #n logically shifted right by Sj, with Sk, writing
the result to Sk

-16 ≤ n ≤ 15
-32 ≤ Sj ≤ 31

or Si,>>#m,Sk OR Si logically shifted right by #m, with Sk,
writing the result to Sk

-16 ≤ m ≤ 15

or Si,>>Sj,Sk ✻ OR Si logically shifted right by Sj, with Sk, writing
the result to Sk

-32 ≤ Sj ≤ 31

or Si,<>Sj,Sk ✻ OR Si rotated right by Sj, with Sk, writing the result
to Sk

all Sj are valid

64-bit forms
or #nnnn,Sj,Sk OR #nnnn with Sj, writing the result to Sk -(2^31) ≤ nnnn ≤ (2^31)-1
or #nnnn,>>Sj,Sk OR #nnnn logically shifted right by Sj, with Sk,

writing the result to Sk
-(2^31) ≤ nnnn ≤ (2^31)-1
-32 ≤ Sj ≤ 31

Restricted Forms: ✻ Instructions marked with an asterisk share a register file read port with other
function units. Only one of these instructions may be present in a given packet:
ECU jmp/jsr cc,(Si) | cc,(Si),nop
RCU mvr/addr Si,RI
ALU and/or/eor/ftst Si,>>Sj,Sk | Si,<>Sj,Sk
MUL mul Si,Sk,>>Sq,Sk | #n,Sk,>>Sq,Sk

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31. For shifts, bits 5-0 are used, bits 31-6 ignored.
Sk any scalar register r0-r31.
#n 5-bit immediate value, sign extended to 32 bits.
#nnnn 32-bit immediate value.
#m immediate shift or rotate value.
>> shifts are logical, right for positive values, left for negative values.
<> rotates are right for positive values, left for negative values.

PAGE 124 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

or Logical OR or
…continued
Condition Codes: z : set if the result is zero, cleared otherwise.

n : set if the result is negative, cleared otherwise.
c : unchanged.
v : cleared.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 125

pad Pad Instruction Packet pad
Function Unit: none

Operation:
Description: Pad instructions are used by the assembler to increase the size of an instruction

packet so that the next instruction packet can be suitably aligned. The requirement
for this operation comes from the restriction that an instruction packet must lie
within 128 bits on any 64 bit boundary. This means that instruction packets larger
than 80 bits may not be arbitrarily aligned. The MPE ignores these pad
instructions and advances the program counter over them. Multiple padding
instructions may be used in sequence.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
pad

Condition Codes: Unchanged by this instruction.

PAGE 126 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

pop POP data from stack pop
Function Unit: MEM

Operation: pop 16 bytes of data from the stack in memory ⇒ Registers
sp + 16 ⇒ sp

Description: Pop 16 bytes of data from the stack, using the current value of the stack pointer
register sp, and then increase sp by 16.

There are four different forms of pop instruction, as shown in the table below, and
each has a matching push form. The first form allows one vector register to be
restored from the stack. The second form, useful for sub-routine calls, allows
three scalar registers to be restored at the same time as the return address is
restored from the stack. The third and fourth forms are useful for interrupt
handlers.

 This instruction completes in two clock cycles, so the target values may not be
used until the second instruction packet after this one. In the instruction packet
which follows this one, the destination contents cannot be relied upon and must
not be referenced.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
pop Vk Pop the vector register Vk from stack.
pop Vk,rz Pop first three elements of vector Vk and rz from the stack.
pop Sk,cc,rzi1,rz Pop the scalar register Sk, the condition codes, interrupt program status register rzi1

and rz from the stack. This is primarily for level 1 interrupt service routines.
pop Sk,cc,rzi2,rz Pop the scalar register Sk, the condition codes, interrupt program status register rzi2

and rz from the stack. This is primarily for level 2 interrupt service routines.

Operand Values: Vk any vector register v0-v7.
Sk any scalar register r0-r31.
cc the cc register.
rzi1 the rzi1 register.
rzi2 the rzi2 register.
rz the rz register.

Condition Codes: Restored by the pop Sk,cc,rzi1,rz and pop Sk,cc,rzi2,rz forms. Otherwise not
affected.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 127

push PUSH data on to stack push
Function Unit: MEM

Operation: sp - 16 ⇒ sp
push 16 bytes of data from registers ⇒ the stack in memory

Description: Increase the stack pointer register sp by 16, then push 16 bytes of data onto the
stack.

There are four different forms of push instruction, as shown in the table below,
and each has a matching pop form. The first form allows one vector register to be
copied to the stack. The second form, useful for sub-routine calls, allows three
scalar registers to be preserved at the same time as the return address is put on the
stack. The third and fourth forms are useful for interrupt handlers.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
push Vk Push the vector register Vk on to stack.
push Vk,rz Push first three elements of vector Vk and rz on to the stack.
push Sk,cc,rzi1,rz Push the scalar register Sk, the condition codes, interrupt program status register

rzi1 and rz on to the stack. This is primarily for level 1 interrupt service routines.
push Sk,cc,rzi2,rz Push the scalar register Sk, the condition codes, interrupt program status register

rzi1 and rz on to the stack. This is primarily for level 2 interrupt service routines.

Operand Values: Vk any vector register v0-v7.
Sk any scalar register r0-r31.
cc the cc register.
rzi1 the rzi1 register.
rzi2 the rzi2 register.
rz the rz register.

Condition Codes: Unchanged by this instruction.

PAGE 128 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

range Index Register Range Check range
Function Unit: RCU

Operation: IF (Index >= Range) set modge
IF (Index < 0) set modmi

Description: Compare the integer part of the specified index register to its corresponding range
from the xyrange or uvrange register, and also compare it to zero. Change the
modmi and modge condition code flags as shown below, without changing the
index register.

 The modulo instruction performs the same operation as range, except that it also
changes the index register.

 Up to two dec instructions may be encoded as bit-fields in this instruction, so that
up to three RCU instructions may be executed in one cycle.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
range RI Compare RI to its corresponding range register, and to zero, setting flags appropriately.

Operand Values: RI is any index register rx, ry, ru, or rv. The value is considered to be a 16.16
number, and the xyctl and uvctl registers are ignored.

Condition Codes: modmi : set if RI was less then zero, cleared otherwise.
modge : set if RI was greater than or equal to the range, cleared otherwise.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 129

rot Rotate rot
Function Unit: ALU

Operation: Scalar Source B <> Source A ⇒ Scalar Destination
Description: Rotate Source B right by Source A, setting flags appropriately, and writing the

result to the destination.

 SOURCE

31 0

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
rot >>Sj,Si,Sk rotate Si right by Sj bits, writing the result to Sk. Negative

values may be used to encode a rotate left.
all Sj are valid

rot #m,Si,Sk rotate Si right by #m, writing the result to Sk -∞ ≤ m ≤ ∞

Operand Values: Sj any scalar register r0-r31.
Si any scalar register r0-r31.
Sk any scalar register r0-r31.
#m immediate shift value.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : unchanged.
v : cleared.

 Other condition codes are unchanged by this instruction.

PAGE 130 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

rti Return From Interrupt rti
Function Unit: ECU

Operation: Conditional jump to the absolute address in rzi1 or rzi2,
also clearing the corresponding imaskHw1 or imaskHw2 bit

Description: If the specified condition is true, then the rti jump is taken, otherwise the jump is
not taken. A taken jump which has a nop operand will force two ‘dead’ cycles
after executing the jump packet, then continue execution from the target address.
A taken jump which does not have a nop operand will have no ‘dead’ cycles—the
jump packet, the next two packets, and the packet at the target address will
execute on successive cycles (ignoring unrelated pipeline stalls). If a jump is not
taken, whether or not it has a nop operand, execution will continue with the next
packet.

 The two instruction packets after a packet containing a jump without a nop
operand are in what is known as the “delay slots” of the jump. If such a jump is
taken, any ECU instructions (bra, halt, jmp, jsr, rti, rts) in its delay slots will
not be evaluated. If the jump is not taken, the delay slots execute normally. This
allows multi-way jump decisions to be made in successive instruction packets.

Assembler Syntax:
INSTRUCTION DESCRIPTION TARGET ADDRESS
16-bit forms
rti cc,(rzi1) If the cc condition is

true: execute the next two packets,
 clear the imaskHw1 bit in the intctl register,
 then continue execution at address rzi1.
false: continue execution with the next packet.

32-bit absolute address

rti cc,(rzi1),nop If the cc condition is
true: force two dead cycles,
 clear the imaskHw1 bit in the intctl register,
 then continue execution at address rzi1.
false: continue execution with the next packet.

32-bit absolute address

rti cc,(rzi2) If the cc condition is
true: execute the next two packets,
 clear the imaskHw2 bit in the intctl register,
 then continue execution at address rzi2.
false: continue execution with the next packet.

32-bit absolute address

rti cc,(rzi2),nop If the cc condition is
true: force two dead cycles,
 clear the imaskHw2 bit in the intctl register,
 then continue execution at address rzi2.
false: continue execution with the next packet.

32-bit absolute address

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 131

rti Return From Interrupt rti
…continued
Operand Values: rzi1 and rzi2 target addresses are always an even number since instructions are on

16-bit boundaries.

 cc may take on any of the following values (if not specied, t is assumed):
cc mnemonic condition test
ne Not equal /z

eq Equal z

lt Less than (n./v) + (/n.v)

le Less than or equal z + (n./v) + (/n.v)

gt Greater than (n.v./z) + (/n./v./z)

ge Greater than or equal (n.v) + (/n./v)

c0ne rc0 not equal to zero /c0z

c1ne rc1 not equal to zero /c1z

c0eq rc0 equal to zero c0z

c1eq rc1 equal to zero c1z

cc (hs) Carry clear (High or same) /c

cs (lo) Carry set (Low) c

vc Overflow clear /v

vs Overflow set v

mvc Multiply overflow clear /mv

mvs Multiply overflow set mv

hi High /c./z

ls Low or same c + z

pl Plus /n

mi Minus n

t True 1

modmi modulo RI was < zero modmi

modpl modulo RI was >= zero /modmi

modge modulo RI was >= range modge

modlt modulo RI was < range /modge

cf0lo Coprocessor flag 0 low /cf0

cf0hi Coprocessor flag 0 high cf0

cf1lo Coprocessor flag 1 low /cf1

cf1hi Coprocessor flag 1 high cf1

Condition Codes: Unchanged by this instruction.

PAGE 132 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

rts Return From Subroutine rts
Function Unit: ECU

Operation: Conditional jump to the absolute address in rz

Description: If the specified condition is true, then the rts jump is taken, otherwise the jump is
not taken. A taken jump which has a nop operand will force two ‘dead’ cycles
after executing the jump packet, then continue execution from the target address.
A taken jump which does not have a nop operand will have no ‘dead’ cycles—the
jump packet, the next two packets, and the packet at the target address will
execute on successive cycles (ignoring unrelated pipeline stalls). If a jump is not
taken, whether or not it has a nop operand, execution will continue with the next
packet.

 The two instruction packets after a packet containing a jump without a nop
operand are in what is known as the “delay slots” of the jump. If such a jump is
taken, any ECU instructions (bra, halt, jmp, jsr, rti, rts) in its delay slots will
not be evaluated. If the jump is not taken, the delay slots execute normally. This
allows multi-way jump decisions to be made in successive instruction packets.

Assembler Syntax:
INSTRUCTION DESCRIPTION TARGET ADDRESS
16-bit forms
rts cc If the cc condition is

true: execute the next two packets,
 then continue execution at address rzi1.
false: continue execution with the next packet.

32-bit absolute address

rts cc,nop If the cc condition is
true: force two dead cycles,
 then continue execution at address rzi1.
false: continue execution with the next packet.

32-bit absolute address

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 133

rts Return From Subroutine rts
…continued
Operand Values: cc may take on any of the following values (if not specied, t is assumed):

cc mnemonic condition test
ne Not equal /z

eq Equal z

lt Less than (n./v) + (/n.v)

le Less than or equal z + (n./v) + (/n.v)

gt Greater than (n.v./z) + (/n./v./z)

ge Greater than or equal (n.v) + (/n./v)

c0ne rc0 not equal to zero /c0z

c1ne rc1 not equal to zero /c1z

c0eq rc0 equal to zero c0z

c1eq rc1 equal to zero c1z

cc (hs) Carry clear (High or same) /c

cs (lo) Carry set (Low) c

vc Overflow clear /v

vs Overflow set v

mvc Multiply overflow clear /mv

mvs Multiply overflow set mv

hi High /c./z

ls Low or same c + z

pl Plus /n

mi Minus n

t True 1

modmi modulo RI was < zero modmi

modpl modulo RI was >= zero /modmi

modge modulo RI was >= range modge

modlt modulo RI was < range /modge

cf0lo Coprocessor flag 0 low /cf0

cf0hi Coprocessor flag 0 high cf0

cf1lo Coprocessor flag 1 low /cf1

cf1hi Coprocessor flag 1 high cf1

Condition Codes: Unchanged by this instruction.

PAGE 134 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

sat Saturate sat
Function Unit: ALU

Operation: Saturate (Scalar Source) ⇒ Scalar Register
Description: The signed integer scalar source is checked to see if it falls outside a defined

range of significant bits, and if it does, then it is clipped to within this range. For
example, a saturate to 16 bits will change any values greater than $00007FFF to
$00007FFF, and any value less than $FFFF8000 to $FFFF8000.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
sat #n,Si,Sk saturate Si to n bits, writing the result to Sk 1 ≤ n ≤ 32

Operand Values: Si any scalar register r0-r31.
Sk any scalar register r0-r31.
#n 5-bit immediate value.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : unchanged.
v : unchanged.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 135

st_p Store pixel data st_p
Function Unit: MEM

Operation: Pixel Data ⇒ Memory
Description: Store a pixel value to memory. See the ‘MPE Data Types’ section for a full

discussion of the behavior of st_p for each data type. The effective address for the
store must be on the selected pixel size boundary, with the appropriate number of
least significant bits equal to zero.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
st_p Vj,(Si) store pixel from register Vj to address Si, transforming the data according to the settings

in the linpixctl register (only data types 4 to 6 are valid)
st_p Vj,<label> store pixel from register Vj to address <label>, transforming the data according to the

settings in the linpixctl register (only data types 4 to 6 are valid)
st_p Vj,(xy) store pixel from register Vj to bilinear address (xy), transforming the data according to

the settings in the xyctl register (only data types 4 to 6 are valid)
st_p Vj,(uv) store pixel from register Vj to bilinear address (uv), transforming the data according to

the settings in the uvctl register (only data types 4 to 6 are valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.

Vj any vector register v0-v7, as a pixel value.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<label> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 word boundary within an 11-bit offset in words (bits 11 to 1 of the
 address) above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

PAGE 136 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

st_pz Store pixel plus Z data st_pz
Function Unit: MEM

Operation: Pixel plus Z Data ⇒ Memory
Description: Store a pixel plus Z value to memory. See the ‘MPE Data Types’ section for a full

discussion of the behavior of st_pz for each data type. The effective address for
the store must be on the selected pixel size boundary, with the appropriate number
of least significant bits equal to zero.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
st_pz Vj,(Si) store pixel plus Z from register Vj to address Si, transforming the data according to the

settings in the linpixctl register (only data types 4 to 6 are valid)
st_pz Vj,<label> store pixel plus Z from register Vj to address <label>, transforming the data according

to the settings in the linpixctl register (only data types 4 to 6 are valid)
st_pz Vj,(xy) store pixel plus Z from register Vj to bilinear address (xy), transforming the data

according to the settings in the xyctl register (only data types 4 to 6 are valid)
st_pz Vj,(uv) store pixel plus Z from register Vj to bilinear address (uv), transforming the data

according to the settings in the uvctl register (only data types 4 to 6 are valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.

Vj any vector register v0-v7, as a pixel plus Z value.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<label> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 word boundary within an 11-bit offset in words (bits 11 to 1 of the
 address) above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 137

st_s Store scalar data to memory st_s
Function Unit: MEM

Operation: Scalar Source ⇒ Memory
Description: Store a scalar value to memory. The effective address for the store may be on any

scalar boundary, and the least significant 2 bits will be ignored.

The st_io instruction is a synonym for st_s. The st_io form may be found in some
old software written when it used to be a separate form.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
st_s Sj,(Si) store scalar from register Sj to address Si
st_s Sj,<labelA> store scalar from register Sj to address <labelA>
32-bit forms
st_s Sj,<labelB> store scalar from register Sj to address <labelB>
st_s Sj,(xy) store scalar from register Sj to bilinear address (xy) (only data type A is valid)
st_s Sj,(uv) store scalar from register Sj to bilinear address (uv) (only data type A is valid)
st_s #nn,<labelC> store immediate data to address <labelC>
64-bit forms
st_s #nnnn,<labelD> store immediate data to address <labelD>

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.

Sk any scalar register r0-r31.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
#nn 10-bit immediate value, zero extended to 32 bits.
#nnnn 32-bit immediate value.
<labelA>is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 vector boundary within a 5-bit offset in vectors (bits 8 to 4 of the
 address) above the following base value:
 $2050_0000 base of local control registers
<labelB> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 scalar boundary within a 11-bit offset in scalars (bits 12 to 2 of the
 address) above any of the three base values shown below.
<labelC> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 vector boundary within a 9-bit offset in scalars (bits 12 to 4 of the
 address) above the base of local control registers shown below.
<labelD>is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on a
 scalar boundary within a 12-bit offset in scalars (bits 13 to 2 of the
 address) above any of the three base values shown below.
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

PAGE 138 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

st_s Store scalar data to memory st_s
…continued
Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 139

st_sv Store small vector data st_sv
Function Unit: MEM

Operation: Small-Vector Data ⇒ Memory
Description: Store a small-vector value to memory. The effective address for the store may be

on any 8-byte boundary, and the least significant 3 bits will be ignored.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
st_sv Vj,(Si) store small-vector from register Vj to address Si
st_sv Vj,<label> store small-vector from register Vj to address <label>
st_sv Vj,(xy) store small-vector from register Vj to bilinear address (xy) (only data type C is valid)
st_sv Vj,(uv) store small-vector from register Vj to bilinear address (uv) (only data type C is valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.

Vj any vector register v0-v7, as a small-vector value.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<label> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on an
 8-byte boundary within an 11-bit offset in words (bits 13 to 3 of the
 address) above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

PAGE 140 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

st_v Store vector data to memory st_v
Function Unit: MEM

Operation: Vector Register ⇒ memory
Description: Store a vector value to memory. The effective address for the store may be on any

16-byte boundary, and the least significant 4 bits will be ignored.

Assembler Syntax:
INSTRUCTION DESCRIPTION
32-bit forms
st_v Vj,(Si) store vector from register Vj to address Si
st_v Vj,<label> store vector from register Vj to address <label>
st_v Vj,(xy) store vector from register Vj to bilinear address (xy) (only data type D is valid)
st_v Vj,(uv) store vector from register Vj to bilinear address (uv) (only data type D is valid)

Operand Values: Si any scalar register r0-r31, as an absolute 32-bit address.

Vj any vector register v0-v7, as a vector value.
(xy) bilinear address formed from the rx, ry, xybase, and xyctl registers.
(uv) bilinear address formed from the ru, rv, uvbase, and uvctl registers.
<label> is resolved to an address by the assembler/linker. The instruction
 encoding for this immediate address value restricts it to being on an
 16-byte boundary within an 11-bit offset in words (bits 14 to 4 of the
 address) above any of the following base values:
 $2000_0000 base of local dtrom
 $2010_0000 base of local dtram
 $2050_0000 base of local control registers

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 141

sub Scalar Subtraction sub
Function Unit: ALU

Operation: Scalar - Scalar ⇒ Scalar Register
Description: Subtract one scalar value from another scalar value, and write the result to a scalar

register.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
16-bit forms
sub Si,Sk subtract Si from Sk, writing the result to Sk
sub #n,Sk subtract #n from Sk, writing the result to Sk 0 ≤ n ≤ 31
32-bit forms
sub Si,Sj,Sk subtract Si from Sj, writing the result to Sk
sub #n,Sj,Sk subtract #n from Sj, writing the result to Sk 0 ≤ n ≤ 31
sub #nn,Sk subtract #nn from Sk, writing the result to Sk 0 ≤ nn ≤ 1023
sub #n,>>#m,Sk subtract #n arithmetically shifted right by #m, from

Sk, writing the result to Sk
0 ≤ n ≤ 31

-16 ≤ m ≤ 0
sub Si,#n,Sk subtract Si from #n, writing the result to Sk 0 ≤ n ≤ 31
sub Si,>>#m,Sk subtract Si arithmetically shifted right by #m, from

Sk, writing the result to Sk
-16 ≤ m ≤ 15

48-bit forms
sub #nnnn,Sk subtract #nnnn from Sk, writing the result to Sk -(2^31) ≤ nnnn ≤ (2^31)-1
64-bit forms
sub #nnnn,Sj,Sk subtract #nnnn from Sj, writing the result to Sk -(2^31) ≤ nnnn ≤ (2^31)-1
sub Si,#nnnn,Sk subtract Si from #nnnn, writing the result to Sk -(2^31) ≤ nnnn ≤ (2^31)-1

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31.
Sk any scalar register r0-r31.
#n 5-bit immediate value, zero extended to 32 bits.
#nn 10-bit immediate value, zero extended to 32 bits.
#nnnn 32-bit immediate value.
#m immediate shift value.
>> shifts are arithmetic, right for positive values, left for negative values, and
 overflow from shift out is not detected.

Condition Codes: z : set if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : set if there is a borrow out of the subtraction, cleared otherwise.
v : set if there is signed arithmetic overflow (sign is invalid), cleared otherwise.

 Other condition codes are unchanged by this instruction.

PAGE 142 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

subwc Scalar Subtraction With Carry subwc
Function Unit: ALU

Operation: Scalar - Scalar - Carry Condition Code ⇒ Scalar Register
Description: Subtract one scalar value from another scalar value and also subtract the current

value of the carry condition code bit, and write the result to a scalar register.

Assembler Syntax:
INSTRUCTION DESCRIPTION DATA RESTRICTIONS
32-bit forms
subwc Si,Sj,Sk subtract c and Si from Sj, writing the result to Sk
subwc #n,Sj,Sk subtract c and #n from Sj, writing the result to Sk 0 ≤ n ≤ 31
subwc #nn,Sk subtract c and #nn from Sk, writing the result to Sk 0 ≤ nn ≤ 1023
subwc #n,>>#m,Sk subtract c and #n arithmetically shifted right by

#m, from Sk, writing the result to Sk
0 ≤ n ≤ 31

-16 ≤ m ≤ 0
subwc Si,#n,Sk subtract c and Si from #n, writing the result to Sk 0 ≤ n ≤ 31
subwc Si,>>#m,Sk subtract c and Si arithmetically shifted right by #m,

from Sk, writing the result to Sk
-16 ≤ m ≤ 15

64-bit forms
subwc #nnnn,Sj,Sk subtract c and #nnnn from Sj, write the result to Sk -(2^31) ≤ nnnn ≤ (2^31)-1
subwc Si,#nnnn,Sk subtract c and Si from #nnnn, write the result to Sk -(2^31) ≤ nnnn ≤ (2^31)-1

Operand Values: c current value of the c flag in the cc register, zero extended to 32 bits.
Si any scalar register r0-r31.
Sj any scalar register r0-r31.
Sk any scalar register r0-r31.
#n 5-bit immediate value, zero extended to 32 bits.
#nn 10-bit immediate value, zero extended to 32 bits.
#nnnn 32-bit immediate value.
#m immediate shift value.
>> shifts are arithmetic, right for positive values, left for negative values, and
 overflow from shift out is not detected.

Condition Codes: z : unchanged if the result is zero, cleared otherwise.
n : set if the result is negative, cleared otherwise.
c : set if there is a borrow out of the subtraction, cleared otherwise.
v : set if there is signed arithmetic overflow (sign is invalid), cleared otherwise.

 Other condition codes are unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 143

sub_p Pixel Subtraction sub_p
Function Unit: ALU

Operation: Pixel Source A - Pixel Source B ⇒ Vector Destination (first 3 scalars)
Description: Subtract two pixels. Pixels consist of three 16 bit elements, taken from the 16

MSBs of the first three scalars in a vector register. Each 16 bit element of the first
source is independently subtracted from the corresponding element in the other
source, and the result is written to the destination vector register in the same
format. The lower 16 bits of each of the first three scalars in the vector destination
are written with zeros.

 This instruction behaves identically to the sub_sv instruction, except that only the
first three elements (the three lowest numbered scalars) of the vector register
destination are written.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
sub_p Vi,Vj,Vk subtract pixel Vi from pixel Vj, writing the result to Vk

Operand Values: Vi any vector register v0-v7, as a pixel.
Vj any vector register v0-v7, as a pixel.
Vk any vector register v0-v7, as a pixel.

Condition Codes: Unchanged by this instruction.

PAGE 144 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

sub_sv Small Vector Subtraction sub_sv
Function Unit: ALU

Operation: Small Vector Source A - Small Vector Source B ⇒ Vector Destination
Description: Subtract two small vectors. Small vectors consist of four 16 bit elements, taken

from the 16 MSBs of the four scalars in a vector register. Each 16 bit element of
the first source is independently subtracted from the corresponding element in the
other source, and the result is written to the destination vector register in the same
format. The lower 16 bits of each scalar element of the vector destination are
written with zeros.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
sub_sv Vi,Vk subtract small-vector Vi from small-vector Vj, writing the result to Vk
32-bit forms
sub_sv Vi,Vj,Vk subtract small-vector Vi from small-vector Vj, writing the result to Vk

Operand Values: Vi any vector register v0-v7, as a small-vector.

Vj any vector register v0-v7, as a small-vector.
Vk any vector register v0-v7, as a small-vector.

Condition Codes: Unchanged by this instruction.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 145

subm Arithmetic Subtraction using the MUL unit subm
Function Unit: MUL

Operation: Scalar Source A – Scalar Source B ⇒ Scalar Destination
Description: Compute the thirty-two bit difference of the two sources, and write this to the

destination scalar register. This instruction allows the MUL unit to be used to
perform some simple arithmetic tasks to augment the ALU.

Assembler Syntax:
INSTRUCTION DESCRIPTION
16-bit forms
subm Si,Sj,Sk subtract Si from Sj and write the result to Sk

Operand Values: Si any scalar register r0-r31.
Sj any scalar register r0-r31.
Sk any scalar register r0-r31.

Condition Codes: Unchanged by this instruction.

PAGE 146 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

MAIN BUS

The Main Bus is used by the MPEs, the video display generator, and the audio DMA channel to transfer
data to and from SDRAM, or from one location to another in internal memory. It has a 32-bit data
channel transferring data at a maximum rate of one long per clock cycle.

The Main Bus is shared by arbitration between the bus masters. Each bus master supplies a priority-
encoded request to the arbiter, which will eventually respond by granting the bus and accepting a
command. Normally, the bus must be requested again for each DMA command.

Arbitration
Several bus masters share the Main Bus, and so an arbiter is required to handle simultaneous requests
from them. Bus arbitration allows us to define maximum bus latency for all bus masters, and to
prioritize requests between masters.

The bus is allocated at two levels. The primary allocation level of the bus is made as follows:

highest

lowest

Refresh now

Video now

Main bus round-robin

Video vacancy

Refresh OK

A bus owner in this hierarchy can be interrupted at any time by a higher priority. The bus owners are:

• Refresh now means that the internal refresh timer requires refreshes be carried out immediately in
order to retain the DRAM contents.

• Video now means that one of the video output channels has a low FIFO level, and that it must be
refilled as soon as possible to avoid underflow. The level at which this occurs is programmable.
There is no priority between the four video channels.

• The Main Bus round robin is described below, and is the secondary bus allocation mechanism. MPE
transfers are included in this.

• Video vacancy means that a video output channel has room in its FIFO for more data, and so a fetch
may occur.

• Refresh OK means that the internal refresh timer indicates that a refresh may be carried out. The
majority of refreshes will occur at this level.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 147

Within this hierarchy lies a secondary arbitration level, shown above as the Main Bus round robin. This
is where all MPE DMA transfers, and the audio output DMA, occur. At this arbitration level, DMA
commands are executed atomically, with the bus being arbitrated on each command.

The arbitration scheme allows each bus master to request the bus at one of four bus priorities. Each bus
priority is serviced on a round-robin basis, which may be considered to be a series of rings, thus:

Bus request

Priority 1 slots

Priority 1 can
have one slot

Priority 2 slots

Priority 2 can
have one slot

Priority 3 slots

Priority 3 can
have one slot Lowest priorityHighest priority

Priority 4 slots

Figure 3 - Round robin prioritized bus arbitration

The bus is available to a requester for one time slot. This is the time it takes to complete the requested
transfer, and you should normally keep it short to limit the maximum bus latency of requesting devices.
Linear transfers cannot be particularly long, but you should be aware that while it is possible to clear the
screen with a single pixel mode transfer, this will lock out all the other DMA requesters for a long time,
and any real time needs, such as audio output, will not be met.

Slots are available at one of four priorities, where priority four is the highest. Priority four requesters are
serviced in turn. At each pass round the allocation loop one slot can be made available to priority three
bus masters, unless this feature is disabled in which case priority four masters can hog all the available
bus bandwidth. Similarly, one slot in the priority three loop can be made available to priority two bus
masters, and so on. These priority gateways, when open, guarantee a maximum bus latency to all bus
masters, dependent on their requesting priority. Each gateway can be independently enabled.

The slots as drawn do not necessarily consume any time. If a slot is not requested it is skipped.
Therefore, if there are no priority three requests, all available bus bandwidth is available at priority two,
and so on.

The available priority levels vary according to the requirements of each bus master. Generally, priority
four is used only for low latency real-time requirements. See the descriptions of each bus master for
more details.

Main Bus DMA Controller

Introduction
Main Bus DMA is the only means of transferring data between DRAM (also referred to as SDRAM)
and NUON. The DMA mechanism is exposed to MPEs, and is also built into the hardware of the video
and audio output channels.

You create a Main Bus DMA command by building a DMA command structure in MPE memory, and
then writing its address to the DMA command pointer register.

The following chain of events makes up a DMA transfer:

PAGE 148 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

1. Request the bus. This is done for the MPEs when the DMA command pointer register is written. The
bus arbitration mechanism and its associated latencies are described in detail on the Main Bus
section.

2. Transfer the DMA command. For the MPEs, this is copied from MPE data RAM. The command
gives the internal and external addresses of the data associated with the transfer, its length, and
various other flags to control such things as linear or XY addressing. When this is complete the
pending flag is cleared.

3. Transfer DMA data. This is a burst of data transfer at a rate of up to 216 Mbytes / second.

This section describes DMA from the perspective of the MPE programmer, as the MPE is the only
device that can directly set up DMA commands under programmer control. However, some peripheral
devices also use DMA to transfer data to and from SDRAM, so this section may also be relevant in that
wider context.

All SDRAM transfers occur through the DMA controller. It manages the SDRAM interface and all
cycles on the internal Main Bus. It is highly optimized to get the best SDRAM and Main Bus bandwidth,
and can perform operations in parallel; such as fetching video data during DMA command transfers or
internal to internal DMA; or reading a DMA command at the same time as writing DMA data. DMA
latencies can be significant, especially when the bus isbusy; and the Comm Bus is better suited to low
latency inter-process communication.

DMA for the MPE
DMA transfer is the only way that MPEs can transfer data to and from SDRAM. These transfers occur
over the Main Bus.

The MPEs program a DMA transfer through a command held in data RAM. The DMA transfer is
initiated by writing the address of this command into the DMA command pointer register. The DMA
command structure must lie on a vector (128-bit) address boundary.

DMA transfers are either linear or bi-linear:

Linear transfers copy from 1 to 128 longs of data from MPE RAM to SDRAM (writing), or from
SDRAM to MPE RAM (reading). The transfer must be aligned to a long boundary in both memories.

Bi-linear transfers are for pixels. The can transfer a rectangle of pixels between the MPE RAM and
SDRAM, and these rectangles include both horizontal and vertical single pixel strips, so that polygon
rendering can be optimized for the best DMA performance. The DRAM storage of pixels is a complex
arrangement intended to optimize memory performance. The base address for bi-linear transfers must be
on a 128-byte boundary. If the cluster bit in the command-mode bits is set, then the base address must be
on a 512-byte boundary.

DMA Commands
DMA commands can take one of the following formats. Each of the fields in the diagrams below
corresponds to one long word of data, and the individual bits within the fields are discussed in more
detail further on. Note that all unused command bits must be written with zero.

Linear transfer command format
This format is used to transfer linear blocks of long data.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 149

Flags

SDRAM or MPE address

MPE address (abs/rel)
The flags control the direction of the transfer, its length, and some other special functions.

The first address field is the destination address of a write, or the source address of a read. This is
sometimes called the base address. It may be anywhere in SDRAM or internal MPE memory, and is
always a system address (absolute).

The second address field is the source of address of a write, or the destination address of a read. This is
sometimes called the internal address. It must be in internal MPE memory, but may be specified as a
system address when the REMOTE bit is set, or as a local MPE address when the REMOTE bit is clear.

Direct write command format
This format is used to write data embedded directly in the command. The DIRECT flag is set to enable
this mode.

Flags

SDRAM or MPE addr.(abs/rel)

Data
The address field is the destination address. It may be anywhere in SDRAM or internal MPE memory,
and may be specified as a system address when the REMOTE bit is set, or as a local MPE address when
the REMOTE bit is clear.

Normally this is used to transfer a single long of data, however if the length of the transfer is more than
one, the same data will be automatically duplicated across many locations.

Pixel transfer command format
This command format is used to transfer pixels. The transfer can be a horizontal or vertical strip of
pixels, or a rectangular area.

Pixel commands can be chained, which allows a series of adjacent horizontal or vertical strips of pixels
to be transferred as a single operation, with the start position and width updated for each strip. This is
useful for optimizing the transfer of polygon data.

PAGE 150 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Flags

SDRAM address

X pointer and length

Y pointer and length

MPE address (abs/rel)

Chain pointer and length
This field only used when CHAIN is set, and is
repeated for as many scan lines as required.

The first address field is the destination address of a write, or the source address of a read. This is
sometimes called the base address. It must be on a 128-byte boundary in SDRAM. If the cluster bit in
the command-mode bits is set, then the base address must be on a 512-byte boundary in SDRAM.

The X and Y fields contain a start position and a length for both X and Y.

The second address field is the source of address of a write, or the destination address of a read. This is
sometimes called the internal address. It must be in internal MPE memory, but may be specified as a
system address when the REMOTE bit is set, or as a local MPE address when the REMOTE bit is clear.

Direct write pixel command format
This command format is normally used as a convenient mode to directly transfer a single pixel. It can
also be used to fill a number of pixels with the same value. It is more efficient than regular pixel DMA.

Flags

SDRAM address

X pointer and length

Y pointer and length

Pixel data
The address field is the destination address of a write, or the source address of a read. This is sometimes
called the base address. It has the same restrictions as the base address for normal Pixel Transfers.

The X and Y fields contain a start position and a length for both X and Y.

Pixel data is stored in the command like this:

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 151

4 bits per pixel

8 bits per pixel

0 1 2 3

0 1

16

pixel16 bits per pixel

16 bits per pixel plus 16-bit Z

32 bits per pixel

pixel Z

pixel

32 bits per pixel plus 32-bit Z pixel / Z see note

31 015

Note that the same data is used for both the pixel and the Z field in 32 bits per pixel plus Z mode. Note
also that in pixel mode 8 the direct data should be 16 bits per pixel!

DMA Command Fields
These are the long words that make up the DMA command. Any unused bits must be set to zero.

DMA Command – Flags
Bits Name Description
31 PLAST Pipelined end flag for chained DMA. Use of this flag is optional, and it should be set

four long words before the last command for optimal efficiency. See the discussion
on Chained DMA below.

30 BATCH This flag allows multiple DMA operations to be run together without any software
intervention. See the discussion of batch DMA below.

29 CHAIN This flag allows multiple bi-linear transfers to occur as a single operation. See the
discussion of DMA chaining below and the chain command long word below.

28 REMOTE When this bit is set, the internal address field is interpreted as a Main Bus address,
and therefore can lie anywhere in internal memory. The MSB of this address is
implicitly zero.
When this bit is clear, the internal address field is interpreted as an MPE internal
address to the requesting MPE. This allows code to be written that will run on any
MPE. (The internal address of all MPEs is the Main Bus address of MPE0.)

27 DIRECT Direct mode flag. When this is set write data is part of the command itself, instead of
being pointed to by the command. See the discussion above of the direct modes.
When this flag is set it also has the effect of turning on the DUP flag whatever the
state of the DUP bit in the command.

26 DUP Duplicate data. When this flag is set for writes, only the first long word is read from
internal memory, and this long is repeated over the entire DMA transfer. This is
useful for memory clears, fills, and so on. See also direct mode.

25 TRIGGER Can trigger the capture of a breakpoint. Normally should be set to zero.
24 ERROR Used for debug only, set to zero.
23-16 LENGTH /

XSIZE
For linear address transfers, this gives the length of the transfer in longs. Valid values
are 1-127.
For bi-linear address transfers, this gives the X size of the addressed pixel bit-map.
The value written here is the width of the pixel-map, i.e. the number of pixels divided
by eight, except for the MPEG modes, where it is the width in luminance pixels
divided by sixteen (i.e. the number of macro-blocks).

15-14 TYPE DMA type, as described below.
13 READ Read flag, as described below.
12 DEBUG Debug flag, must be set to zero.
11-0 MODE DMA command mode, as described below.

PAGE 152 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

The DMA transfer type, read flag and mode is encoded as follows. The mode bits are discussed in the
section describing each mode, see below.

Type Read Description Length Address Mode bits
BA9876543210

0 0 Linear write 1-64 longs Linear ???????ULIIS

0 1 Linear read 1-64 longs Linear ???????ULIIS

2 0 Motion predictor write n/a Bi-linear PmMmmSmRCFFF

2 1 Motion predictor read n/a Bi-linear PmMmmSmRCFFF

3 0 Pixel write X, Y size Bi-linear C?BVPPPPZZZA

3 1 Pixel read X, Y size Bi-linear C?BVPPPPZZZA

Linear Transfer Command Mode Bits
Linear transfers are the standard means of DMA transferring linear long data. Linear transfers may be
between internal memory and SDRAM, or can be from internal memory to internal memory, and so can
pass data between MPEs.

Linear transfer mode can also be used to read and write single bytes and words. When the IIS field is set
to 001, the UL field selects byte transfer mode.

Linear transfer mode bits are:

Bits Name Description
4-3 UL Used for byte or word transfer when the IIS field is set to 001, these control if the transfer is

byte 0, byte 1 or word. The base address is specified to a word boundary.
00 Must be set to zero when IIS is not 001, illegal when it is
01 Byte 1 only (bits 0-7)
10 Byte 0 only (bits 8-15)
11 Word transfer

2-0 IIS Control writing sparse linear data, for example when building the audio output buffer with the
data from one audio channel. When the S bit is set, the base address may be on any word
boundary, when it is clear, the base address must lie on a long boundary. This function is only
available to the MPEs.
IIS Action Description
000 ULULULULULULULUL contiguous data
010 UL--UL--UL--UL-- alternate longs
100 UL------UL------ every fourth long
110 UL-------------- every eighth long
001 byte mode, see above
011 U-L-U-L-U-L-U-L- alternate words
101 U---L---U---L--- every fourth word
111 U-------L------- every eighth word

Pixel Command Mode Bits
Pixel mode is generally used for all pixel transfers. Pixel transfer must be between internal memory and
SDRAM. The base address for bi-linear transfers must be on a 512-byte boundary.

Bits Name Description
11 C Cluster addressing.
9 B Backwards flag B. See the discussion of backward pixel transfer below.
8 V Transfer direction. This is used to make narrow vertical strips much more efficient in their use

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 153

Bits Name Description
of DRAM. The normal pixel order of X then Y in MPE memory is reversed to be Y then X, so
that a horizontal strip of pixels in MPE data RAM maps onto a vertical strip in DRAM.
0 Horizontal (normal)
1 Vertical
When this bit is set the A and B flags swap function.

7-4 PPPP Pixel types. This control the pixel type assumed for the transfer, and the mapping between
MPE RAM types and DRAM types. The types are described in the table below:

3-1 ZZZ Z comparison for writes. Compares the target pixel Z, which is the Z of the pixel already
present in DRAM, with the transfer pixel Z, which is the pixel being transferred from the
MPE RAM, and inhibits the write if the compare condition is met.
Value Inhibit write if:
0 never
1 target pixel Z < transfer pixel Z
2 target pixel Z = transfer pixel Z
3 target pixel Z <= transfer pixel Z
4 target pixel Z > transfer pixel Z
5 target pixel Z != transfer pixel Z
6 target pixel Z >= transfer pixel Z
7 pixel only write
Value 7 is a special case flag that makes the DMA write transfer write only to the pixel values
and leave the Z undisturbed. No Z compare is performed.

0 A Backwards flag A. See the discussion of backward pixel transfer below.

Motion Predictor Command Mode Bits
Motion predictor mode is specific to the MPEG decoder function, and is not available for other
functions.

Bits Name Description
11 P Set for pixel mode, clear for MCU mode
10 m This flag is passed to the MCU
9 M Set for manual length, clear for auto (implied by the RCFFF bits, below)
8-7 mm These flags are passed to the MCU
6 S If asserted, it indicates that 4:3 scaling needs to be done. This applies during a write-back

operation only
5 m This flag is passed to the MCU
4-3 RC 00 Luma

10 Cr/Cb (pixel mode only)
01 Cr
11 Cb

2-0 FFF Field / frame control
000 16x16 frame
001 16x16 frame
010 16x16 field
011 16x16 field
100 16x8 field top
101 16x8 field top
110 16x8 field bottom
111 16x8 field bottom

PAGE 154 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

DMA Command – SDRAM Address
Bits Name Description
 30-1 BASE SDRAM address of the transfer. This is the DRAM pointer for a linear transfer

operation, or the base address of the bit-map for a bi-linear operation.
The base address for linear transfers is normally long aligned, although it may be a
word address for the special case word & byte transfer mode.
The base address for bi-linear transfers must be on a 128-byte boundary. If the
cluster bit in the command-mode bits is set, then the base address must be on a 512-
byte boundary.
The address must be in the range $40000000 - $7FFFFFFE. The bit range 30-1
implies only that the bottom bit of the address is always zero. No shifting is required
on a normal byte address.

31 PLAST Pipelined end flag for chained DMA. Use of this flag is optional, and it should be set
four long words before the last command for optimal efficiency. See the discussion
on Chained DMA below.

DMA Command – MPE Address
Bits Name Description
 30-2 BASE MPE address of the transfer. This is the MPE space pointer for a linear or a bi-linear

transfer operation. It should be long aligned.
If the REMOTE flag is set in the command, it may point anywhere in the MPE
space, i.e. in the range $2000 0000 - $2FFF FFFC. If the REMOTE flag is not set it
is an address within the current MPE. As all the MPEs appear to be in the MPE0
space internally, this means it must lie in the range $2000 0000 - $207F FFFC.
The bit range 30-2 implies only that the bottom two bits of the address are always
zero. No shifting is required on a normal byte address.

31 PLAST Pipelined end flag for chained DMA. Use of this flag is optional, and it should be set
four long words before the last command for optimal efficiency. See the discussion
on Chained DMA below.

DMA Command – X pointer and length
Bits Name Description
31 PLAST Pipelined end flag for chained DMA. Use of this flag is optional, and it should be

set four long words before the last command for optimal efficiency. See the
discussion on Chained DMA below.

25-16 XLEN X length. This is the width of the bi-linear transfer, in pixels. For mode 1 this must
be a multiple of 4, for mode 3 it must be a multiple of 2.

10-0 XPOS X pointer. This is the start X position for a bi-linear transfer, in pixels. For mode 1
this must be a multiple of 4, for mode 3 it must be a multiple of 2.
For a motion predictor command this is a 10.1 bit value, for pixel commands it is an
11-bit integer.

DMA Command – Y pointer and length
Bits Name Description
31 PLAST Pipelined end flag for chained DMA. Use of this flag is optional, and it should be

set four long words before the last command for optimal efficiency. See the
discussion on Chained DMA below.

25-16 YLEN Y length. This is the height of the bi-linear transfer, in pixels.
10-0

YPOS Y pointer. This is the start Y position for a bi-linear transfer, in pixels.
For a motion predictor command this is a 10.1 bit value, for pixel commands it is an

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 155

Bits Name Description
11-bit integer.

DMA Command – Chain pointer and length
Bits Name Description
31 PLAST Pipe-lined end flag for chained DMA. Use of this flag is optional, and it should be

set four long words before the last command for optimal efficiency. See the
discussion on Chained DMA below.

30 LAST Last flag. This bit should be set on the last chain command word, unless the PLAST
flag was set four long words previously, in which case this does not have to be set.

25-16 ZLEN X / Y length. This is the width or height of the next strip of a chained bi-linear
transfer, in pixels. It is X if the transfer direction in the mode is horizontal, it is Y if
the mode is vertical.
For mode 1 if this is X then this must be a multiple of 4, for mode 3 it must be a
multiple of 2.

15-14 STEP Step. This controls how the Y pointer for horizontal DMA, or the X pointer for
vertical DMA, is modified before this strip:
0 increment by 1
1 no change
2 decrement by 1

10-0 ZPOS X / Y pointer. This is the start position for next strip of pixels. For horizontal DMA,
it is the X position, for vertical DMA it is the Y position. Its is subject to the same
restrictions as the X and Y pointer above, as appropriate.
It is an 11-bit integer.

Chained DMA
Pixel (bi-linear) transfers may be chained. This allows multiple scan lines of a polygon, for example, to
be transferred in a single DMA operation, and can be used to make much more efficient use of the bus,
particularly for small polygons. A chained DMA sets up an initial transfer of a single strip of pixels,
which may be either horizontal or vertical, and then the chain command long sets up a new start position
and length.

As an example, if the transfer direction is set to horizontal, then the initial DMA transfers a horizontal
strip of pixels. The chain command that follows supplies a new X start position, a new X width, and can
either increment, decrement, or have no effect on the Y pointer. The pixel data buffer in MPE data RAM
in is in one contiguous block.

This is useful for very small polygons, or for reading the data at the edges of an area for anti-alias
operations. It is also very useful for line drawing.

Chaining is best suited for applications where you are limited by bus bandwidth, as it improves bus
performance, at a cost of increased program overhead. If you are processor bandwidth bound you may
choose to continue to use DMA transfers of single strips.

Chaining is enabled by setting the CHAIN bit in the DMA command flags. The end of the chain may be
flagged in one of two ways:

1. The last chain command word should have the LAST bit set in it.

2. The command word four longs before the last long word of the chain should have the PLAST bit set.
This allows the DMA to pipeline the end of the chain, and will give a significant performance boost.

PAGE 156 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

If both flags are present in a chained command, then whichever would finish the chain first takes
priority.

Batch DMA
Batch DMA transfers allow the programmer to set up multiple DMA transfers without having to wait for
each to complete, and scheduling the next. Batch DMA transfers do not occur in the same slot, as the
bus is re-arbitrated between them, but they have the advantage that no program overhead is required to
schedule the next transfer.

Batch DMA command blocks should start on contiguous vectors in memory, so you may have to insert
padding between them.

Pixel Transfer Types
Some type conversion can occur between the MPE memory and SDRAM. The types in DRAM are
explained below; the types in MPE memory are explained in the MPE section; however where the types
overlap the same number refers to the same mode.

Type MPE mode DRA
M
mode

Notes

 ZZZ=7 ZZZ≠7
0 2 2 5Z Allows just the Z field to be written of mode 5 DRAM data.
1 1 1 1 4 bit pixels. X position and X length must be multiples of four.
2 2 2 2 16 bit pixels.
3 3 3 3 8 bit pixels. X position and X length must be multiples of two.
4 - 4 4 32 bit pixels.
5 2 5 5 16 bit pixels with 16 bit Z. Z flags are used.
6 4 6 6 32 bit pixels with 32 bit Z. Z flags are used.
7 4 4 6Z Allows just the Z field to be written of mode 6 DRAM data.
8 4 4 2 32 bit pixels in MPE, 16 bit pixels in DRAM
9 2 5 7 16/16 pixels in MPE, 16/16 triple buffer map C in DRAM. Z flags are

used.
10 2 5 8 16/16 pixels in MPE, 16/16 triple buffer map B in DRAM. Z flags are

used.
11 2 5 9 16/16 pixels in MPE, 16/16 triple buffer map A in DRAM. Z flags are

used.
12 2 2 CZ Allows just the Z field to be written of a16/16 triple buffer map in

DRAM.
13 2 5 A 16/16 pixels in MPE, 16/16 double buffer map B in DRAM
14 2 5 B 16/16 pixels in MPE, 16/16 double buffer map A in DRAM
15 2 2 DZ Allows just the Z field to be written of a 16/16 double buffer map in

DRAM.

Notes

• Types 0, 5, 6, 9-11 and 13-14 will over-write just the pixel field if the Z flags are set to 7 for a pixel
only write.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 157

MPE DMA Control and Status Register
The DMA control and status register allows each MPE to control and determine its DMA status.

Bits Name Description
31-
24

done_cnt_wr Write done count. This counter is used only when trying to set up multiple
overlapping read and write transfers. It is incremented by the hardware
whenever a write transfer completes, and is decremented by software. Valid
values are between 0 and $1D. Two error conditions may also exits, $FE for
overflow, and $FF for underflow.

23-
16

done_cnt_rd Read done count. This counter is used only when trying to set up multiple
overlapping read and write transfers. It is incremented by the hardware
whenever a read transfer completes, and is decremented by software. Valid
values are between 0 and $1D. Two error conditions may also exits, $FE for
overflow, and $FF for underflow.

15 cmd_error Command error. The DMA controller has found an error while processing a
command. There are Comm Bus registers in the DMA controller to determine
what was wrong in detail.

14 dmpe_error Command pointer error. One of the following things has occurred:
• The command pointer write was to an invalid range
• The command pointer incremented past a 32K byte range.
• The command pointer was written while a transfer was pending.

11 done_cnt_wr_dec Decrement write done count. When a one is written to this bit the write done
counter is decremented. This should be performed when necessary to clear the
interrupt condition.

10 done_cnt_rd_dec Decrement read done count. When a one is written to this bit the read done
counter is decremented. This should be performed when necessary to clear the
interrupt condition.

9 done_cnt_enable Done count enable. Writing a one to this bit enables the read and write done
counter mechanism. This has a variety of effects, discussed below. When read
this bit returns the enable status.

8 done_cnt_disable Done count disable. Writing a one to this bit disables the read and write done
counter mechanism. This has a variety of effects, discussed below. This bit
always reads as zero.

6-5 priority Bus priority. Sets the bus priority for MPE DMA transfers.
4 pending Command pending. This flag means that the DMA command pointer must not

be written to. This bit is read only.
3-0 active DMA active level, this give the number of DMA commands that have been

accepted by the DMA controller, but whose data transfer is not yet complete. In
theory, this can reach a level of around 6 or 7. These bits are read only.

Simple DMA Control
Bits 6 and below are used to control the DMA at its simplest level. All the higher bits should be written
as zero. See the discussion on out-of-order completion to see if this is all you need.

The DMA pending flag is used to indicate that the DMA command pointer holds the address of a DMA
command that has not yet been transferred to the main DMA controller, because the MPE is still waiting
to be granted the bus. Whenever it is clear, a new DMA command address may be written to the
command pointer, even if previous DMA transfers have not yet completed.

The DMA active level is a counter that indicates which DMA buffers are still in use and cannot be read
for reads, or re-used for writes. When the active level count is zero, all DMA data transfers are

PAGE 158 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

complete. It increases by one every time a command is read from this MPE by the DMA controller, and
decreases by one every time a DMA transfer to or from this MPE completes.

DMA Errors
Two flags, the command error bit, and the command pointer error bit, flag errors to the MPE. When
either of these bits is set the DMA error interrupt to the MPE is held high. Writing a one to the
appropriate bit will reset the error.

Out-of-order DMA Completion
All DMA transfers take place in the programmed order as far as the SDRAM is concerned. However,
because the DMA pipelines for both read and write are several clock cycles deep, overlapped DMA
transfers can appear to complete out-of-order at the MPE. If a DMA is programmed to write to SDRAM
as soon as the pending bit clears from a DMA that reads from SDRAM, then the write data can be
fetched from the MPE before the read data has arrived at the MPE. Although at the SDRAM the read
occurs before the write, if the write transfer was using the read data, then the wrong data would get
written.

The only way for software to deal with this effectively is to maintain separate track of read transfers and
write transfers. This allows you to always determine what has actually completed when the active level
drops. The done counters in the MPE Main Bus DMA control register allow this more sophisticated
control to be enabled when required.

Overlapped DMA Control
Writing one to the done count enable bit enables the advanced DMA control functionality. This changes
the DMA done interrupt from a pulse to a level that is active whenever the read done counter or the
write done counter have valid values greater than 0.

Writing a one to the done count disable bit disables the done counters. If you write a one to both the
done count enable bit and the done count disable bit both the read done counter and the write done
counter are flushed, any errors are cleared, and the done count enable bit is set.

After processing an interrupt, write a one to either the decrement write done count bit or the decrement
read done count bit to decrement the appropriate done counter.

When reading this register:
• The done count disable bit returns zero.
• The done count enable bit returns the enable status.
• The decrement read done count bit returns one if the read done counter has valid values greater than zero.
• The decrement write done count bit returns one of the write done counter has valid values greater than zero.
When the done count enable bit is disabled counters DO still increment!

Caveats: When using batch mode the LAST command in the batch determines whether the read done
counter or the write done counter is incremented. DANGER: if a command error occurs during a batch
transfer the transfer will be aborted. The type (read/write) of the aborted command will determine which
done counter is incremented. The command error will also be set and further information about what
went wrong can be determined by querying the DMA controller.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 159

Backward Pixel Transfers
The backward flags for pixel DMA transfers have the effect shown on pixel DMA:

horizontal DMA vertical DMA

A = 1
B = 0

A = 1
B = 1

A = 0
B = 0

A = 0
B = 1

start pixel

horizontal DMA vertical DMA

Figure 4 - Backwards DMA Types

These flags can be used to give the reflections and rotations as shown.

DMA Pixel Types

Storage Formats
Each type of pixel type, and linear data, are stored packed in memory in a format optimized to their type.
This means that you should not store data in one format and expect to make sense of it in another.
Memory for mixed modes should always be allocated on 512-byte boundaries, and in 512-byte
increments.

Details of the storage formats are beyond the scope of this document, but if you obey the rules above
then you need not be aware of the layout details.

Pixel Type 1 – 4 bit pixels
Type one pixels are four bits. The value represents an index into an arbitrary look-up table, and so have
no fixed relationship with the physical appearance. These are sometimes useful for memory efficient
texture maps, and can be used for memory efficient overlay display buffers.

All DMA operations on them must have both X position and X size as multiples of four.

Pixel Type 2 – 16 bit pixels
Type two pixels are sixteen bits per pixel. They represent a physical color, thus:

PAGE 160 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

49 510 015

CbCrY

When these pixels are used for display generation zeroes are added in the least significant positions to
increase them to 8 bits per field.

Pixel Type 3 – 8 bit pixels
Type three pixels are eight bit. The value represents an index into an arbitrary look-up table, and so have
no fixed relationship with the physical appearance. These are used for memory efficient overlay display
buffers.

All DMA operations on them must have both X position and X size as multiples of two.

Pixel type 4 – 32 bit pixels
Type 4 pixels are 32 bits per pixel. They represent a physical color, thus:

15 723 1624 8 031

controlCbCrY

They can be used by load and store pixel instructions, and can be present in DRAM and in MPE RAM.

Pixel type 5 – 16 bit pixels with 16 bit Z
Type 5 pixels are 16 bits per pixel, with an associated 16-bit control value, usually used for a Z-buffer
depth. The 16 pixel bits represent a physical color, thus:

01531 16

Z
2025 2126

CbCrY

When these pixels are used for display generation zeroes are added in the least significant positions to
increase them to 8 bits per field.

Pixel Type 6 – 32 bit pixels with 32 bit Z
Type 6 pixels are 32 bits per pixel, with an associated 32-bit control value, usually used for a Z-buffer
depth. The fourth byte of the pixel value is normally unused, but may be accessed. See the discussion of
pixel types in the MPE section. These pixels represent a physical color and Z value, thus:

3263 47 3955 4856 40 031

unusedCbCrY Z

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 161

COMMUNICATIONS BUS

The Communication Bus allows units within NUON to communicate over a low latency, high-speed
bus. This is a 32-bit bus running at the full clock rate, and therefore has a bandwidth in excess of 200
Mbytes per second. This bus is quite independent from the main and other busses, and provides an
alternative to passing data in memory. This bus is in many ways analogous to a simple network.

The Communication Bus is used both as means of inter-processor communication, and as a means of
communication with peripherals. The following devices have a Communication Bus interface:

• The MPEs

• Video output generator

• Video input channel

• Audio output and input channels

• System IO for user interface, controllers and media control

• ROM interface

• Main Bus DMA controller

• The external host processor on the System Bus

• System debug controller

• MPEG Block Decode Unit

• Coded data interface
Each device attached to the Communication Bus has a transmit buffer, and a receive buffer. Each of
these buffers can contain 128 bits of data, along with a Communication Bus address.

Communication Bus Identification Codes
Each MPE is allocated a logical identification code, so that communication is by logical device, rather
than physical. This allows processes to communicate without having to be aware of the physical location
of each other. All other devices have a physical identity. At power on, MPEs are assigned their MPE
number as an ID by default.

Communication Bus identification numbers are allocated 7-bit values as follows:

ID
dec

hex

Function

0-63 00-3F Logical codes for MPEs
65 41 Video output controller
66 42 Video input controller
67 43 Audio interface
68 44 Debug controller
69 45 Miscellaneous IO interface
70 46 ROM Bus interface
71 47 DMA controller
72 48 External host
73 49 BDU
74 4A Coded Data interface

PAGE 162 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

75 4B Serial Peripheral Bus

MPEs may send packets to themselves, but no other device can do this.

Data Transfer Protocol
Before you try to transmit a packet, you must first make sure that the local transmit data buffer is empty
unless you can be sure that it is already empty. Then you must write the target device address into the
Communication Bus control register unless it is already set up, and then the transmit data itself. The act
of writing data into the transmit data buffer marks it as full, and initiates the transfer mechanism. The
transmit buffer full flag is set until the hardware has transmitted the data, or the transmission fails.

The Communication Bus interface hardware will then request a transfer of data to the selected target by
requesting the Communication Bus. The bus is allocated on a round-robin basis between requesting
transmitters. When the transmitter is allocated the bus it presents the target ID for the transfer, and its
own ID. Two things can then happen. If the target is able to receive data, that is its receive buffer is not
full or disabled, then the data is transferred over the bus. If the target is unable to receive the bus
transaction terminates. In either case the transaction is then complete, and the bus is re-arbitrated.

The tables below explain the Communication Bus protocol. Each line represents one clock cycle.

Transfer to receiver with buffer empty:
Requester action Bus contents Controller action
Bus request

… 0-Lmax clock cycles …
 previous transfer Bus acknowledge
Present target ID Target ID and Sender ID Check for target full, so continue in

this case.
Present data Data 1
 Data 2
 Data 3
 Data 4 next bus acknowledge
 next transfer target ID

Transfer to receiver with buffer full:
Requester action Bus contents Controller action
Bus request

… 0-Lmax clock cycles …
 previous transfer Bus acknowledge
Present target ID Target ID and Sender ID Check for target full, abort the

transfer in this case.
 Idle
 next transfer target ID

Note the following about this protocol:

• The maximum bus latency, Lmax, is normally given by five clock cycles times the
maximum number of simultaneously requesting Communication Bus masters. This
number can be controlled in an application by suitable restrictions on use of the
Communication Bus.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 163

• The internal data busis used to carry the target ID to the controller and the sender ID to
the target. This means packets are actually five clock cycles in length.

• If the receive buffer of the target device is empty, the data will be transferred when the
transmitter is allocated the bus. However, if the receive buffer is full or disabled, one of
two things can happen:

• If the transmit retry flag is set, the hardware will continue to request the bus, and every
time the bus is granted to it, it will attempt to transfer the data. The transmit buffer full
flag indicates that this process has not yet succeeded. This will tie up the transmit port.
Transmitters waiting to transmit data can therefore occupy a significant proportion of the
bus bandwidth if the receiver is slow to empty its buffer.

• If the transmit retry flag is clear, the transmit failed flag is set, the transmit buffer full flag
is cleared, and the hardware goes idle. This allows the transmitter to give up on the
transfer and take some other action, such as attempting to send the data to another target.

A receiver can refuse to accept Communication Bus data by setting the receive disable flag. This means
that all transmission attempts to it will fail on target full, even if its receive data buffer is empty.

When data is received a flag is set that may be polled, and an interrupt can be generated. The ID of the
transmitter may be read. When the receive data is read, the receive buffer is marked as empty, and
another packet can be received unless receive is disabled.

Data Flow Control
The Communication Bus can be used as a means of inter-process communication, as it can generate an
interrupt when a packet is received. This allows any processor to interrupt any other, and pass it a
message at the same time.

If data is being passed between processors in some multi-processor pipeline, then it is necessary to
control the flow, particularly if a transmitter could send the data to one of several receivers, depending
on which is able to take it. In this case a receiver can use the receive disable mechanism to flag that it is
not willing to accept data. If a transmitter has the transmit retry field clear, it can then detect that a
transmit has failed, and perhaps attempt to transmit the same data packet to another target.

In the reverse situation, where a receiver could receive from one of several transmitters, it could use the
same mechanism to poll them in turn, or just enable reception, and wait for data. If the data set being
transferred was larger than one Communication Bus packet, it would have to be prepared to receive, and
deal with, a packet from another transmitter in the middle of it.

Communication Bus Control Flags
Each processor-controlled interface to the Communication Bus has the following control fields:
Communication Bus status and control:
Bits Read /

Write
Description

31 R Receive buffer full. This flag indicates that there is a received packet in the receive data
buffer and the received source ID fields. This flag is cleared (and these fields can then be
over-written) when the receive buffer is read.

30 RW Receive disable. This flag should be set to prevent reception. All transmit attempts to this
receiver will fail while this flag is set. If this flag is set while the receive buffer is empty,
the receive buffer full flag should be checked afterwards, in case a packet was received just

PAGE 164 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bits Read /
Write

Description

before this flag was set.
16-23 R Received source ID. This indicates the Communication Bus ID of the last data packet to be

received. This value should be read before the receive data buffer, as another packet might
be received as soon as the receive buffer is empty.

15 R Transmit buffer full. This flag indicates that the hardware is attempting to transmit the data
in the transmit data buffer to the transmit target ID. If the retry flag is set then this bit will
remain set until a successful transmission has occurred, if the retry flag is clear, then this
bit will always be cleared after first transmission attempt, and the transmit failed flag will
reflect what happened.

14 R Transmit failed. When the transmit retry flag is clear, this flag will be set when a transmit
attempt fails because the receive buffer is full. This flag is cleared when the transmit data
register is next written.

13 RW Transmit retry flag. When this flag is set, the hardware will continue to attempt to transmit
the data until the transmission is successful.
If this bit is cleared while the transmit buffer is full, then the transmit buffer full flag
should be polled until it is clear indicating that the transmitter has stopped retrying. When
it is clear the transmit failed flag should be tested to determine if the last transmit attempt
succeeded or failed.

12 RW Transmit bus lock flag. When a transmitter sets this bit, the Communication Bus will be
locked to this transmitter until this bit is cleared. This allows one transmitter to have the
maximum possible Communication Bus bandwidth available to it. (Only the MPEs have
this bit.)
This is potentially dangerous to performance, as all other Communication Bus traffic is
locked out while this bit is set; and so this should be used with extreme care.

0-7 RW Transmit target ID. This will be used for the next data to be written into the transmit data
buffer.

IO Devices on the Communication Bus
The Communication Bus supports ‘slave’ IO devices as well as processors. These obey the normal rules
of the Communication Bus, but will generally have their own particular definition of what the data
packet represents. Simple IO devices may not connect to all 32 bits of the Communication Bus.

Writing to an IO device requires sending a packet that contains a register address and the write data.
Generally, the register address and command type is sent in the first long word of the transfer, and the
write data in the rest of the packet.

Reading from an IO device requires sending a packet that contains the register address, and then waiting
for the IO device to respond with a packet containing the read data. The receiver will have to interpret
this data in the context of the last command packet it sent. An IO device which receives a read command
will leave its receive buffer full flag set until it has responded successfully.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 165

OTHER BUS

The Other Bus is a DMA bus between the MPEs and external System Bus memory and ROM. It
resembles the Main Bus, but is greatly simplified.

The mechanism to use it is the same as Main Bus DMA – a command is built in MPE memory and the
address of that command placed in a pointer register. This causes the bus to be requested. At the end of a
transfer and whenever the bus is idle the bus is arbitrated, and when granted to a master the command is
read from that master by the central controller, which then executes the command.

All transfers on this bus are initiated by the central controller, and may be between any two addresses in
the Other Bus address space. The restriction is that both source and destination may not lie in the same
block of memory, for example they may not both be on the external System Bus, or not both in the same
MPE.

Command Format
This is the format of the Other Bus DMA command. This is created in MPE memory on a vector (128
bit) boundary. Its is always three long words in length:

Internal Address

Base Address

Flags

Figure 5 - Other Bus DMA Command Format

These are the long words that make up the DMA command. Any unused bits must be set to zero.

DMA Command – Flags
Bits Name Description
31-29 Unused Set to zero.
28 REMOTE When this bit is set, the internal address field is interpreted as a system address, and

therefore can lie anywhere in memory that is accessible from the Other Bus. Refer to
the table under Memory Map in the Introduction section.
When this bit is clear, the internal address field is interpreted as an MPE internal
address to the requesting MPE. This allows code to be written that will run on any
MPE. (The internal address of all MPEs is the system address of MPE0.)

27-24 Unused Set to zero.
23-16 LENGTH This gives the length of the transfer in longs. Valid values are 1-255.
15-14 Unused Set to zero.
13 READ Read flag, set for transfer from base address to internal address, clear for transfer

from internal address to base address.
12-0 Unused Set to zero.

DMA Command – Base Address
Bits Name Description
 31-0 BASE Base address of the transfer. This is the “external” pointer for a linear transfer

PAGE 166 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

operation, and is always a system address. Normally, it must lie on a long boundary,
but for transfers to ROM it may lie on any byte boundary.

DMA Command – Internal Address
Bits Name Description
31-30 Unused These bits must be set to zero.
29-2 IA Internal address. This is the internal pointer of the DMA transfer. Normally this will

be in the data RAM of the MPE requesting the transfer, however it may actually be
any valid address in internal memory if the REMOTE flag is set. It is always on a
long word boundary.

1-0 Unused These bits must be set to zero.

Restrictions on Other Bus DMA
1. Remote DMA may only be used on a remote MPE if that MPE is not using its Other Bus interface. If

you break this rule the Other Bus will become unusable.

2. The source and destination of the transfer may not be the same device, i.e. an MPE cannot transfer
data to itself, and the Other Bus cannot perform block copies in external memory.

Control Registers
The following two control registers are present in each MPE and control DMA.

odmactl Other Bus DMA control and status register
Read / Write

Bit Name Description
31-7 reserved
6-5 odmaPriority DMA bus priority, in the range 1-2. Default value is 1. 0 disables Other Bus DMA, and

3 is reserved for future use.
4 cmdPending DMA command pending, this flag means that the DMA command pointer must not be

written to. This bit is read only.
3-0 cmdActive Other Bus DMA active level, 0 indicates no activity, 1 means that a single DMA

transfer is active, 2 means that a data transfer is active and a command is pending,
higher values will not occur in NUON.
These bits are read only.

odmacptr Other Bus DMA command pointer
Read / Write

The address of a valid DMA command structure may be written to this register when the DMA
pending flag is clear. Writing this register initiates the DMA process. The address written here
must lie on a vector address boundary.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 167

SYSTEM BUS

The System Bus is the expansion bus of NUON. It allows additional memory to be accessed, and can be
used for communication with external processors. The MPEs access it by performing Other Bus DMA,

The System Bus operates in one of two principal modes:

Internal Mode
In internal mode the System Bus interface acts as a memory controller. “Internal” refers to the use of the
on-chip memory controller. This controller can access three memory areas; one SDRAM area, one area
switchable between SDRAM or a non-multiplexed bus memory type, and one fixed non-multiplexed bus
memory area, these latter may be used for ROM, EPROM, flash memory, SRAM or some other external
memory mapped device.

Each of these three areas may independently contain 8, 16 or 32-bit memory. The DRAM interface
supportsa variety of 16-bit wide SDRAM configurationss, running at a 54 MHz clock speed.

External Mode
In external mode, an external device controls the system memory. NUON may request the bus, and then
perform cycles to external memory. External memory is normally always 32 bits wide, but one special
area may be defined as narrower.

The External System Bus provides a means by which the NUON system may be expanded. It supports
both bus master and slave operations.

The Other Bus DMA channel may become a bus master on the System Bus, accessing memory and
peripheral devices on the System Bus in parallel with the operation of the rest of the system. NUON will
request the System Bus from an external arbiter when it is required, so the bus can be shared with an
external bus master. The system interface supports byte, word and long word transfers.

A slave interface is also provided on the System Bus so that an external bus master may communicate
with the NUON system.

The Memory Controller Mode is set with configuration resistors during reset.

External Memory Controller mode
In this mode, an external memory controller (such as the MPC860 SIU) is responsible for generating the
control signals and strobes for System Bus memories and peripherals. The bus is synchronous to a bus
clock (BCLK), and supports high speed burst data transfers. The system provides a clean interface to the
Motorola MPC860, and can be modified with external logic to support Other Bus specifications.

The System Bus area memory map in this mode is:

Address Size Description
$8000 0000 - $AFFF FFFF 768M System Bus

All this memory is treated in the same way

PAGE 168 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Internal Memory Controller mode
In this mode, NUON is responsible for generating all the strobes and control signal for System Bus
peripherals and memories. The System Interface supports locally attached memories including SRAM,
ROM, FLASH or DRAM.

In internal memory controller mode NUON will still accept slave transfers from an external bus master.
However it will not be possible for an external bus master to access memory controlled by NUON.

The DRAM controller in NUON will support either SDRAM or EDO DRAM, with widths of 16-bits for
SDRAM and 32 bits for EDO. However, EDO support is considered obsolete in Aries 3 and later
devices.

The System Bus area memory map in this mode is:

Address Size Description
$8000 0000 - $8FFF FFFF 256M System Bus DRAM
$9000 0000 - $90FF FFFF 16M System Bus DRAM / ROM / SRAM 0
$9100 0000 - $9FFF FFFF 240M Reserved
$A000 0000 - $A0FF FFFF 16M System Bus ROM / SRAM 1
$A100 0000 - $AFFF FFFF 240M Reserved

However, this memory map may be modified if using SDRAM, as follows:
dram0Enabl
e

dram1Enable contiguousSdram DRAM0 Address Space DRAM1 Address Space

0 0 X Disabled Disabled

1 0 X $8XXXXXXX Disabled

0 1 0 Disabled $9XXXXXXX

0 1 1 Disabled $8XXXXXXX

1 1 0 $8XXXXXXX $9XXXXXXX

1 1 1 $8XXXXXXX contiguous to DRAM0

Internal Mode Address Multiplexing
In internal mode, the EDO DRAM address lines should be hooked up as follows:

address
pin

22 21 20 19 18 17 16 15 14 13 12 11

row 23 22 20 19 18 17 16 15 14 13 12 11

column 25 24 21 10 9 8 7 6 5 4 3 2

System Bus Control Registers
These registers allow the System Bus interface to be configured. They are available as part of the
Miscellaneous IO controller, and you should refer to that section to see how to access them over the
Communication Bus.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 169

sysCtrl System Bus Control
$0030
Read / Write

This register controls the behavior of the NUON system on the System Bus.

Bit Name Description
31 Unused, set to zero.
30 xhostAddrLo This bit modifies to address lines used by an external master to access

NUON. When set, the number of address lines is reduced. This is
notmally used for the QFP package option.
The default state is zero, and is compatible with earlier versions of
Aries. The logic looks at sys_sa[23:21] for host offset, and
sys_sa[19:2] to determine the register being accessed by the master.
During a 16-bit master access, in addition to sys_sa[23:2], sys_sa[24]
is used to determine which word of the long is being accessed (0 =
31:16, 1 = 15:0). During an 8-bit master cycle, sys_sa[24,20] are used
to determine the byte being accessed (00 = 31:24, 01 = 23:16, 10 =
15:8, 11 = 7:0).
In the QFP package, the address inputs [24:18] are forced to zero, so
16-bit master accesses will always access bits 31:15 of the NUON
registers.
If this bit is set, during a 32-bit master access, sys_sa[23:21] are used
for host offset, and sys_sa[12:2] are used to determine the register
being accessed. For 16-bit master cycles, sys_sa[14] determines the
word being accessed, and in 8-bit master mode, sys_sa[14:13]
determine the byte being accessed.
These bits will allow a 16-bit master to work with either the QFP or
BGA versions of the chip. The master will have to drive sys_sa[12:2]
with the address of the NUON register, with sys_sa[14] = 0 to access
bits[31:16] and sys_sa[14] = 1 to access bits[15:0]. Boot code will
have to set the two new bits.

29 xhostDataLo The default state for this is zero, implying that the master's data bus is
aligned on sys_sd[31]. This means that during external master reads
from and writes to NUON, data is used on:
 sys_sd[31:0] for 32-bit masters
 sys_sd[31:16] for 16-bit masters
 sys_sd[31:24] for 8-bit masters
If this bit is set the master’s data bus is aligned on sys_sd[0]. This
means that during external master reads from and writes to NUON,
data is used on:
 sys_sd[31:0] for 32-bit masters
 sys_sd [15:0] for 16-bit masters
 sys_sd[7:0] for 8-bit masters
Aries 3 and up only.

28 dramBank2 When this bit is set in internal mode, the chip select 0 space is used for
DRAM instead of for a static address memory type.

27 xHost16 External host is a 16-bit device (default 32)
26 xHost8 External host is an 8-bit device (default 32)
25 cs1RdyEn Require an external ready signal to terminate a CS1 cycle. This bit will

enable the memory cycles done in this range to terminate on a falling
edge on the SYS_RDY_B input pin.

24 cs0RdyEn Require an external ready signal to terminate a CS0 cycle. This bit will

PAGE 170 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

enable the memory cycles done in this range to terminate on a falling
edge on the SYS_RDY_B input pin.

23 dramX16 Internal mode System Bus DRAM is 16-bit
22 dramX8 Internal mode System Bus DRAM is 8-bit
21 saMuxEn Enables the address multiplex function for external mode.
20 uaeTsDead UAE to TS dead cycle. Control part of the cycle timing for external

mode master cycles.
19 Unused, set to zero.
18 external External mode. This controls the mode of the System Bus itself, and is

discussed below in the System Bus section. The reset state of this is
set. It should be set appropriately once after power up.

15-11 cs1Length Chip select 1 length. This controls the timing of the System Bus
internal mode chip select 1 memory area ($A000 0000 - $A0FF
FFFF). The value of this register is the number of clock periods that a
chip select will be active for. On reset the value of the length is set to
all ones. Do not program a value of less than 3.

10-6 cs0Length Chip select 0 length. This controls the timing of the System Bus
internal mode chip select 0 memory area ($9000 0000 - $90FF FFFF).
The value of this register is the number of clock periods that a chip
select will be active for. On reset the value of the length is set to all
ones. Do not program a value of less than 3.

5 hostInt External host interrupt. Writing a one to this bit generates an external
host interrupt. Writing a zero has no effect, and it is not necessary to
clear this bit after writing a one. A zero is always read from this bit
position.

4 busLock System Bus lock. When this is set, the System Bus is requested and
held until this bit is cleared. This allows atomic operations to be
performed on the System Bus, but must be used with great care to
avoid locking up the System Bus. You should set this bit, perform a
test and set operation or whatever, and clear this bit all in the same
cache line to avoid causing problems.

0-2 slaveOffset Sets the NUON System Bus slave register address offset. NUON can
appear in one of 8 locations at 2 Mbyte offsets relative to the base
address decoded by CS. CS is assumed to decode a 16 Mbyte region,
so address line 2 to 23 are decoded. These bits are defined at power-on
by external configuration resistors.

sysMemctl System Bus Memory Control
$0031
Read / Write

This register controls the behavior of the memory on the System Bus.

Bit Name Description
14-4 refLength Refresh length. Refreshes are performed at the clock rate divided by

this value plus one.
1 slowRam Slow DRAM flag. This bit is set to slow down some aspects of the

DRAM timing.
0 edoRam EDO DRAM flag. This bit should be set for EDO DRAM, and left

clear for page mode DRAM.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 171

sysSdramCtrl System Bus SDRAM Control
$0032
Read / Write

Following bits have meaning only if the System Bus is programmed in internal mode. If
SDRAM is enabled either by setting dram0Enable or dram1Enable, the EDO interface will be
automatically disabled.
Bits Name Description
31 contiguousSdram This bit in conjunction with bit 24 determines the address space of

logical bank 1 when logical bank 1 is enabled. See table below.
30 refEnable If set to 1, sdram/edo refresh operations will be performed. On a

reset, this bit is always set. If set to 0, refresh will never be
performed. This bit will be set to 0 only during sdram initialization
and must be set to 1 during normal operation.

29 dram1Banks Specifies if the sdram in logical bank1 has two or four internal
banks.
0 = 2 banks, 1 = 4 banks.

28-27 dram1Width Specifies if the sdram in logical bank1 is composed of one X16, two
X8, or four X4 parts. 00 = X4, 01 = X8, 10 = X16, 11 = Reserved.

26-25 dram1Tech Specifies if the sdram in logical bank1 is composed of 16 Mbit, 64
Mbit, 128 Mbit, or 256 Mbit technology parts. 00 = 16 Mbit, 01 =
64 Mbit, 10 = 128 Mbit, 11 = 256 Mbit

24 dram1Enable Specifies if logical bank 1 is populated or not. This bit in
conjunction with bit 31 determines the address space of this bank. 1
= enable sdram, 0 = disable sdram

23 dram0Banks Specifies if the sdram in logical bank0 has two or four internal
banks.
0 = 2 banks, 1 = 4 banks.

22-21 dram0Width Specifies if the sdram for logical bank0 is composed of one X16,
two X8, or four X4 parts. 00 = X4, 01 = X8, 10 = X16, 11 =
Reserved.

20-19 dram0Tech Specifies if the sdram in logical bank0 is composed of 16 Mbit, 64
Mbit, 128 Mbit, or 256 Mbit technology parts. 00 = 16 Mbit, 01 = 64
Mbit, 10 = 128 Mbit, 11 = 256 Mbit

18 dram0Enable Specifies if logical bank 0 is populated or not. This bank is always
mapped to the 8XXXXXXXh System Bus address space. 1 = enable
sdram, 0 = disable sdram

17 refreshCmd If set, will cause the sdram controller to issue a refresh command to
both the logical banks during sdram initialization. It will be
automatically cleared by the sdram controller once the requested
refresh has been performed. It must not be set during normal
operation.

16 mrsCmd If set, will cause the sdram controller to issue a mode register set
command to both the logical banks during sdram initialization. This
bit will be automatically cleared by the sdram controller once the
requested mrs command has been issued. The cas latency and burst
length bits in this register must be programmed before setting this
bit. It must not be set during normal operation.

15 prechCmd If set, will cause the sdram controller to issue a precharge all banks
command to both the logical banks during sdram initialization. This
bit will be automatically cleared by the sdram controller once the
requested precharge command has been issued. It must not be set

PAGE 172 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

during normal operation.
14-13 twr Sets the delay in clocks between the last data in and precharge

command (also known as tDPL). Delay = Value + 2 clocks.
12-10 tras Sets the delay in clocks between activate and precharge commands.

Delay = Value + 2 clocks.
9-7 trc Sets the delay in clocks between activate and refresh, and refresh

and activate commands. Delay = Value + 2 clocks.
6-5 trp Sets the delay in clocks between precharge and activate commands.

Delay = Value + 2 clocks.
4-3 casLatency These bits must be set prior to setting the MRS_CMD bit.

00 = Reserved, 01 = CAS Latency 1, 10 = CAS Latency 2, 11 =
CAS Latency 3

2-1 burstLength These bits must be set prior to setting the MRS_CMD bit.
00 = Reserved, 01 = Burst Length 2, 10 = Burst Length 4, 11 = Burst
Length 8

0 tristateSdramBus If set, the sdram address and control signals will be tri-stated if an
external master performs a cycle. The data (???) bus will be tri-
stated if the external master performs a read with the chip-select de-
asserted, indicating that it is reading a systembus device and not the
Aries registers, or if it performs a write cycle.

Note: The refresh rate is controlled by the refLength bits in the sysMemctl register.

Address space table controlled by bits 31, 24 and 18:
dram0
Enable

dram1
Enable

contiguous
Sdram

DRAM0 Address Space DRAM1 Address Space

0 0 X Disabled Disabled
1 0 X 8XXXXXXXh Disabled
0 1 0 Disabled 9XXXXXXXh
0 1 1 Disabled 8XXXXXXXh
1 1 0 8XXXXXXXh 9XXXXXXXh
1 1 1 8XXXXXXXh contiguous to DRAM0

Communication with an External Host Processor
The NUON System Bus allows the NUON system to act both as a peripheral device to an external host
processor, and to transfer data to external memory on the System Bus.

In order that fast reliable communication can be achieved between the NUON sub-system and the
external host, three mechanisms are provided. These are:

1. NUON processors can interrupt the external host, and the external host can interrupt NUON
processors.

2. The external host has a Communication Bus port which allows it to quickly transfer 128-bit data
packets with any Aries processor. This interface can be interrupt driven or polled.

3. The NUON Other Bus DMA channel can become a bus master using the System Bus interface, and
therefore MPEs can read and write data in RAM shared with the external host processor.

External host access to the Communication Bus
The NUON host register interface provides access to the Communication Bus for an external host
processor. This interface does not operate in quite the same way as the MPE Communication Bus

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 173

interface. In particular, there is not access to the additional comminfo data, and the interrupt handling is
different.

When a Comm Bus packet is sent to the System Bus interface, hostIntStat[1] gets set. This bit can only
be cleared by the host processor writing zero to it. However, if you clear hostIntStat[1] before you read
the data, it will be set again. So, when you receive an interrupt (at the host processor), do the following:

1. See if hostIntStat[1] = 1.

2. If so, read host_crd[127:0]. This will clear the internal interrupt signal.

3. Now set hostIntStat[1] = 0.

MMP Slave Interface
The NUON host interface can be viewed as a memory mapped peripheral device. When a bus master
(such as a host processor) activates the CS signal, NUON will qualify the address(???) bus and RW
signal, to allow the bus master to read a write a variety of internal registers.

The base address of these registers is programmable by power-on configuration resistors, and the offset
given in this table is relative to that base address.

These registers are:

host_ctd Communication Bus 128-bit transmit data
$0000 0000 to $0000 000C
Write Only

This register is four 32-bit write only registers in consecutive locations that allow the external
host to send communication packets. Writing the highest address initiates a transmit.

Although this shares the address range with host_crd below, these are physically separate
registers, i.e. the transmit and receive functions are entirely independent.

host_crd Communication Bus 128-bit receive data
$0000 0000 to $0000 000C
Read Only

This register is four 32-bit read only registers in consecutive locations which allow the external
host to receive Communication Bus packets. Reading the highest address clears the receive
buffer.

Although this shares the address range with host_ctd above, these are physically separate
registers, i.e. the transmit and receive functions are entirely independent.

host_cctl Communication Bus status and control
$0000 0010
Read / Write

This register controls the operation of the external host Communication Bus port, and allows its
status to be determined.

Bit Name Description
31 sysRecFull Receive buffer full (read only)

PAGE 174 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Name Description
30 sysComDis Receive disable (read / write)
29-24 reserved
23-16 sysSourceID Received source ID (read only)
15 sysTxFull Transmit buffer full (read only)
14 sysTxFail Transmit failed (read only)
13 sysTxRetry Transmit retry flag (read / write)
12-8 reserved
7-0 sysTargetID Transmit target ID (read / write)

hostIntCtl External Host Interrupt Control
$0000 0014 for write
$0000 0018 for read
Read / Write

This register allows the external host to control what interrupts it receives from the
Communication Bus interface and other sources.

Bit Name Description
31-4 reserved
3 debugInt Debug interrupt enable
2 mpe2hostInt NUON software to host interrupt enable
1 rxFullInt Communication Bus receive buffer full interrupt enable
0 txEmptyInt Communication Bus transmit buffer empty interrupt enable

hostIntStat External Host Interrupt Status
$0000 0018 for write
$0000 0014 for read
Read /Write

This register allows the external host to determine the source of an interrupt from the NUON
system.

The interrupt line to the external host assumes level sensitive interrupts. The bits below allow it
to determine the source of an interrupt, and some of them may be cleared by writing a zero to the
corresponding bit. Any bits that you do not want to clear should be written with a one, this will
have no effect, and will prevent erroneous interrupt clears.

Bit Name Description
31-24 version Hardware version number. Currently assigned codes are:

 $03 Aries 3
 $02 Aries 2 (MMP-L3C)
 $00 all previous versions (MMP-L3A/B a.k.a. Oz/Aries 1)

23-4 reserved
3 debugInt Debug interrupt. This must be cleared in the debug control unit.
2 mpe2hostInt NUON software to host interrupt. Cleared by writing a zero to this bit.
1 rxFullInt Communication Bus receive buffer full. Cleared by writing a zero to this bit.
0 txEmptyInt Communication Bus transmit buffer empty. Cleared by writing a zero to this

bit.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 175

hostIntReq External Host Interrupt & Reset Request
$0000 001C
Write Only

This register allows the external host to request that NUON processors be interrupted. This
allows communication to be established without using the Communication Bus, as this can be
masked by a full receive buffer. The interrupt will go to any MPE which has this interrupt
enabled.

This register also supports a reset of the NUON system. This has the same effect as a power on
reset, and so should only be used in extreme circumstances.

Bit Name Description
31-2 reserved
1 hostReset Reset the NUON system (active high).
0 host2mpeInt Writing a 1 to this bit interrupts the NUON processors. Writing a 0 has no

effect. It is not necessary to clear this bit.

hostMemPrct External Host Memory Protection
$0000 0020
Read / Write

This register controls a memory protection for the external host. A region may be defined within
the host address space, by means of upper and lower address bounds, that is allowable for NUON
accesses. The region is programmable on 64 Kbytes boundaries. All transfers outside this space
will fail in external mode, and can generate a NUON debug exception.

The address used for this comparison is the transfer address after any modification given by the
upperOffset bits, which are internally programmed in the sysMemctl register.

Bit Name Description
31-16 upperBound Upper address bits. This is at most the top 16-bits of the highest allowable

address for NUON. This defaults to all ones implying no upper bound.
15-0 lowerBound Lower address bound. This is the top 16-bits if the lowest allowable address

for NUON. This defaults to all zeroes implying no lower bound..

host16bit0 External Host 16-bit area 0
$0000 0024
Read / Write

This register controls a memory area that is only 16-bits wide, as opposed to the general 32-bit
width of memory. The region is programmable to be any power of two bytes in size, on a
corresponding power of two boundary, down to a 64 Kbyte boundary.

The address used for this comparison is the transfer address after any modification given by the
upperOffset bits, which are internally programmed in the sysMemctl register.

Bit Name Description
31-16 wordAddress Upper address bits. This is as many as the top 16-bits of the 16-bit area, as

selected by the mask in the low bits.
15-0 wordMask Upper address mask. A set bit here means that the corresponding bit in the

high part of the register is used for comparison.

PAGE 176 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

As an example, to program a 16-Mbyte area starting at $83000000 you would set the low bits to
$FF00 so that only the top eight bits are used for the comparison, and set the high bits to $8300.

This register defaults to all ones implying that the top 64-Kbytes of memory are 16-bit. If you
plane to use this area for 32-bit memory you will have to change the setting.

host16bit1 External Host 16-bit area 1
$0000 0028
Read / Write

This register is exactly the same as the register above, and allows a second area to be
programmed.

hostBanks External Mode DRAM muxing control
$0000 002C
Read / Write

This register determines where the boundary between bank 0 and bank1 lies for the SAMUX
function in external mode only. If internal mode is selected, or the SAMUX function is not in
use, it has no effect. The boundary is controlled in the same manner as the 16-bit area registers
above, with the exception that only the top 8 bits of the address are used, limiting the resolution
to a 16-Mbyte boundary.

This register contains address and mask bits that determine a sub-range of System Bus addresses
that correspond to Bank0. Any address not in this range is assumed to reside in Bank1 or other
sub-range.

The address used for this comparison is the transfer address after any modification given by the
upperOffset bits which are internally programmed in the sysMemctl register.

Bit Name Description
20-19 bank1mux Selects the multiplexing type for SAMUX in bank 1 of DRAM in external

mode. See below.
17-16 bank0mux Selects the multiplexing type for SAMUX in bank 0 of DRAM in external

mode. See below.
15-8 bank1addr Bank 1 start address. This is as many as the top 8-bits of the address of the

bank 1 area, as selected by the mask in the low bits.
7-0 bank1mask Upper address mask. A set bit here means that the corresponding bit in the

start address field is used for determining the start of the bank 1 area. This is
superfluous and should be set to all ones.

hostSysOffset External Mode Address Offset
$0000 0030
Read / Write

This register determines the physical address of NUON transfers in the external CPU memory
space. The MPEs see the System Bus space as starting at the logical address $80000000, in
external mode the MSB of the logical address is ignored, and this value is then added to the top
sixteen bits. i.e.

physical address = logical address - $80000000 + (sysOffset << 16).

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 177

Bit Name Description
15-0 sysOffset External mode address offset. This defaults to $8000 implying no address

modification.

dmaBreak External Mode DMA Interruption
$0000 0034
Read / Write

This register contains two fields that can be used to break a System Bus DMA transfer into
smaller groups. This can allow an external device to master the bus without having to wait for
the entire DMA transfer to complete.

Bit Name Description
31-16 breakCount This field contains the number of clock periods that the System Bus interface

will wait before it attempts to re-arbitrate for the bus after having been
interrupted.

15-0 cmdCount This is the number of individual transfers, within an entire DMA, that the
interface will execute before releasing the bus.

External Mode Bank Select Bits
In External Mode, the System Bus address range can have several subdivisions. Control bits in several
registers determine the type of memory expected to reside in each section. The System Bus has 2 main
banks of memory. Once the location of each has been programmed, select bits for each bank indicate the
type of memory placed to be accessed. When operations in these ranges occur it is expected that the
external processor will produce the necessary memory strobes. The external processor can handle a wide
variety of memory sizes, but it is done in a very particular manner. The System Bus implements 6
possible memory configurations. These are the likely choices for memory that NUON could encounter
in a design. The selected ones are:

Bank Select Bits Memory Size (kB)

00 1 or 2 M

01 4 or 8 M

10 16 or 32 M

11 Invalid

External Mode Address Multiplexing
The System Bus control logic can be programmed to present column and row addresses on the address
pins of the System Bus during memory accesses. The address bits that make up the row and column
address for the respective memory sizes follow the particular scheme that the external processor decided
to use. The multiplexed address bits will appear on the lower bits of the address pins, bits 13-2, and will
conform to the following scheme:

1M/2M

address
pin

13 12 11 10 9 8 7 6 5 4 3 2

row x x 20 19 18 17 16 15 14 13 12 11

PAGE 178 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

column x x x 10 9 8 7 6 5 4 3 2

4M/8M

address
pin

13 12 11 10 9 8 7 6 5 4 3 2

row x 22 21 20 19 18 17 16 15 14 13 12

column x x 11 10 9 8 7 6 5 4 3 2

16M/32M

address
pin

13 12 11 10 9 8 7 6 5 4 3 2

row 24 23 22 21 20 19 18 17 16 15 14 13

column x 12 11 10 9 8 7 6 5 4 3 2

External Mode MMP Bus Master Interface
NUON can also arbitrate for the host bus, and become a full bus master.

As a bus master, NUON can read and write any memory on the host bus (using either the built-in
memory controller in internal mode, or an external memory controller such as the MPC860 SIU in
external mode).

By sharing host bus memory with a host processor, high-bandwidth data transfers can be made to and
from a previously defined data transfer area, or ‘letter-box’ RAM. Typically a semaphore can be used to
lock and unlock this shared memory, or transmit and receive command FIFOs can be implemented as
required.

Interrupts
The MPEs can be interrupted through the MMP Slave interface described above. An interrupt can be
used as a signal to them that a data block is available in shared RAM.

In addition, NUON can interrupt a host processor via one of the GPIO signals.

Through a combination of these interrupts, shared memory and semaphores, a reliable, high-bandwidth
communications interface can be implemented between NUON and a host processor.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 179

ROM BUS

NUON supports up to 16 Mbytes of ROM, EPROM, Flash or SRAM on a simple 8-bit interface. This
memory is intended for the Bootstrap, API / library, and built-in application software.

This memory is available as a memory-mapped device on the Other Bus, and so is accessible to the
MPEs.

An alternative means of access to this memory is provided over the Communication Bus. Any
Communication Bus master can send the ROM Bus interface a packet containing up to four addresses,
and the ROM Bus interface will respond with the data from those addresses, which can be byte, word or
long, as specified in the request packet.

ROM Communication Bus Interface
This mechanism is now considered obsolete and should not be used.
Any Communication Bus master can send the ROM Bus interface a request packet. The ROM Bus
interface will fetch the requested data, and send a response packet containing the requested data. Only
read transfers are possible using this mechanism. While the ROM Bus interface is servicing a request
packet it will neither accept any more request packets nor allow any Other Bus cycles to be performed to
ROM.

The data in long word 0 is read first, and the top two bits of this long word indicate the size of the
transfer requested for all four addresses. The addresses are read, and fetched from in sequence after that,
and an address of zero is used to terminate the sequence. This causes the fetch mechanism to cease
reading and return the data read so far.

If the size is line, then address fields 1-3 are ignored. All addresses, for any size data, can be arbitrarily
byte aligned.

The request and response packet structures are described below. These packets are transmitted in the
normal manner over the Communication Bus. The Communication Bus identification numbers are
defined on page 161. The communication protocol is as follows for the request packet:

Long word Description
0 31-30 transfer size, 0 = long, 1 = byte, 2 = word, 3 = line

23-0 request address 0
1 23-0 request address 1, if zero then no further data is read
2 23-0 request address 2, if zero then no further data is read
3 23-0 request address 3, if zero then no data is read

A response packet is returned. Its format is:

Long word Description
0 Read data for address 0.

31-0 long read data
31-16 word read data
31-24 byte read data

1 Read data for address 1 in the same format as that for address 0.
2 Read data for address 2 in the same format as that for address 0.
3 Read data for address 3 in the same format as that for address 0.

Read data is not defined if the corresponding request address, or a preceding one, was zero.

PAGE 180 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

VIDEO OUTPUT & DISPLAY TIME-BASE

The video display generator creates the video display output stream from a set of DRAM images,
scaling and filtering the image if appropriate. It generates its own video time-base.

The video display generator always physically outputs lines of 720 pixels. It always drives an interlaced
display, and supports both 60 Hz and 50 Hz video refresh rates. Available output resolutions are as
follows:

Field rate: 60 Hz 50 Hz
Interlaced TV display: 720 x 480 720 x 576

This output resolution does not have to match the internal display buffer resolution, as the display
generator is capable of both horizontal and vertical scaling on the memory image to match these output
resolutions. Also, graphic buffers in memory do not have to fill this pixel area; they may correspond to
sub-rectangles of it, with a specified border color filling the remainder of the screen. Multiple sub-
rectangles can be displayed simultaneously, subject to certain restrictions.

The display generator can also fetch data from up to three separate display buffers and overlay one over
the other with controllable transparency. These buffers do not have to be in the same pixel mode, and
they can be independently scaled. Their capabilities are:
Channel Capability
Main Video Channel 16-bit pixels, 32-bit pixels or MPEG data
Overlay Video Channel 4-bit pixels, 8-bit pixels, 16-bit pixels or 32-bit pixels
Sub-picture Video Channel Sub-picture data

These three channels are combined with this priority:

1. Overlay Video Channel data

2. Sub-picture Channel data

3. Main Video Channel data

4. Border color

Each Overlay and Sub-Picture pixel has an alpha value, which spans from transparent to opaque. Main
Channel and Border are mutually exclusive.

Video Data Flow, Filtering, and Scaling

Vertical Filtering
Vertical filtering is performed by fetching data from two, three or four lines of pixels and combining
them with a F.I.R. filter to give the output value. No line buffering is performed; therefore vertical
filtering adds significant additional bandwidth requirements to the video output channel. For example, a
720 x 480 16-bit video display normally requires about 20 Mbytes/sec of Main Bus bandwidth, while
adding a four-tap anti-flicker filter to that will increase the requirement to around 80 Mbytes/sec. This
should be weighed against performing filtering in software, or not filtering at all.

The two tap vertical filter performs linear interpolation, using the fractional parts of the position field.
Three and four tap filters are implemented using either a set of coefficients stored in a register, or in the

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 181

case of the four-tap filter, a set of pre-programmed coefficients selected by the fractional parts of the
position. Further details of this filtering are described in the Main Bus section.

Main Video Channel Horizontal Scaling
Horizontally, pixels may be arbitrarily scaled up or down, with a 4-tap filter. This scaling includes the
following required scaling abilities for MPEG-2:

Scaling ratio Image width in DRAM
1:1 720 pixels
4:3 540 pixels
3:2 480 pixels
2:1 360 pixels

The pixel rate scaling is performed with a sophisticated horizontal re-sizing filter. This is a 4-tap F.I.R.
filter with two different sets of sixteen-coefficients.

The scaling rate is actually defined by a 3.11 bit value, which is effectively the value added to the X
pointer of the display fetch after each pixel. This gives sufficient precision for the scaling ratios outlined
above, as well as a much more general scaling ability.

Scaling can be performed on all Main Video Channel pixel types.

This horizontal scaling mechanism cannot scale down by more than a factor of three due to FIFO
bandwidth limitations. However, a four-to-one scale down of MPEG pixels in the main channel is
possible using decimation.

Vertical Scaling
Vertical scaling is handled differently to horizontal scaling, as it is performed within the main DMA
mechanism. The filter applied may be interpolation between two successive display lines, or a F.I.R.
applied to two, three or four display lines.

Vertical scaling is controlled by a vertical scale counter and a vertical scale increment. These are both
1.11 bit values. After each display line is fetched the vertical increment is added to the vertical counter,
and if the integer field advances then the display pointer is advanced one line. The fractional bits control
vertical interpolation and filtering.

Vertical scaling can be applied to both the Main Video Channel and the Overlay Video Channel.

Overlay Video Channel
The Overlay Video Channel supports 16-bit or 32-bit pixels in the same manner as the main video
channel, and 32-bit pixels may contain transparency or alpha-channel data, so that pixels are blended
with the Main Video Channel image. 16-bit pixels have one transparent color, and an overall alpha level
may be set for the remaining colors.

The Overlay Video Channel can also support 4-bit or 8-bit logical pixels, which are turned into 32-bit
pixels by indexing them into a Color Look-up Table (CLUT).These may also contain alpha-channel
data.

Overlay data cannot be scaled other than by 1:1 or 1:2 and is a buffer of pixels covering a defined
rectangle of the screen. Multiple overlay rectangles can be achieved by re-programming these registers

PAGE 182 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

as the beam advances down the display, with the restriction that there can be no vertical overlap between
them.

Sub-Picture Video Channel
The Sub-Picture channel is intended to support the display of a Sub-Picture stream as described in the
“DVD Specifications for Read-Only Disc Version 1.0”. Two data sets are prepared by decoding
software, and are read by the display hardware from main memory. These are the sub-picture data
channel and the sub-picture control channel. The sub-picture mechanism is described in more detail in
the Sub-Picture section of this spec.

Display Data Path
The flow of video data for main memory to the video output channel is shown below. The pointers and
Main Bus DMA block shown here are all within the Main Bus DMA logic, and are described in that
section. The VDG logic, described here, is the functionality from the Video FIFO onwards in the display
path.

 +

Sub-picture video channel
address pointers and control flags

Main video channel address
pointer and control flags

Overlay video channel address
pointer and control flags

Main Bus DMA Controller
vertical filtering
vertical scaling

Main Bus SDRAM

Main video channel
data

Video FIFO

Overlay video
channel data

Sub-picture data
and control

mux

Figure 6 - Data Flow From Main Memory To The Video FIFO

Fetch of video data is controlled from within the Main Bus DMA Controller, and the pointers and flags
shown above are actually part of the DMA unit. Vertical filtering and scaling is performed within the
DMA controller.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 183

This diagram shows how the pixel data is processed after being fetched from main memory, but before it
is output:

Video FIFO (32 X 128)

Li
ne

ar

Horizontal
scaling and

filtering

CLUT and
Pixel doubling

Sub-picture
unpacker

Border

4:
4:

4
/ 4

:2
:2

4:
4:

4

Alpha Blending

4:4:4 + alpha

4;
4:

4

Alpha Blending

4:
4:

4

4:4:4 + alpha

To Output Timing

4;
4:

4

Down Sampling

4:
2:

2

Main Video
Channel

Sub-picture
Channel

Overlay Video
Channel

Figure 7 - data flow from the video FIFO to the video output

The three data channels are fetched from Main Bus memory, and any vertical scaling is performed on
the main video channel data prior to the video FIFO.

The main video channel data is in one of the packed pixel modes except 4 bits or 8 bits per pixel; or is in
the MPEG display data format. This data may be horizontally scaled and filtered.

Overlay channel data is either logical pixel data (4 bits or 8 bits used to index a CLUT) or physical pixel
data in any of the packed pixel modes, i.e. a 4:4:4 mode. The pixels may be doubled in width, and may

PAGE 184 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

include alpha channel data, either from the CLUT or from the 8 control bits of 32 bit pixels. Outside of
the active overlay pixel area, totally transparent pixels are generated.

Alpha values of zero are opaque, so that if the overlay channel has its alpha at $00 then it is opaque, if it
is $FF it is almost transparent. Color $00, $00, $00 is always treated as transparent.

The sub-picture decoder is a special purpose unit used for DVD applications. It outputs 4:4:4 data with
an alpha value. It shares a RAM with the overlay channel to hold its CLUT.

Address Generation
The display address generator will always fetch lines of pixel running from left to right upwards through
memory. The choice of data formats available is described below. The base address of the display map
is programmable, as is the amount to add to the base address for each successive line of the display.
Display line data does not therefore have to be contiguous.

Video Time-Base
Two counters control the video time-base generator. One counts in clock cycles to give the video line
timing, and the other counts in lines to give the field and frame timing.

A series of control values determine where in the count value various display functions are enabled,
such as blanking, border, active video and the overlay data. The default values in these registers are the
NTSC settings. Once a new value is written into these registers, the value will remain in effect until the
next system reset (system power up or hard/soft reset).

The following picture will help in understanding the default settings:

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 185

8
0

1
0

8
0

1
0

8
0

1
0

8
0

1
0

0
0

F
F

0
0

X
Y

0
0

F
F

0
0

X
Y

C
B YC

RY C
B YC

RYC
B YC

RY C
B YC

RY C
B YC

RY C
B YC

RY C
B YC

RY C
B YC

RY F
F

8 BLEN = 536 8 PLEN = 2880

HLEN = 3432

EAV SAVBLANKING

Start of Digital Line Start of Digital Active Line Next Line

BLANKING

OPTIONAL BLANKING

FIELD 1
ACTIVE VIDEO

BLANKING

OPTIONAL BLANKING

FIELD 2
ACTIVE VIDEO

LINE 1 (V=1)

LINE 10 (V=X)

LINE 20 (V=0)

LINE 264 (V=1)

LINE 273 (V=X)

LINE 283 (V=0)

LINE 525 (V=0)

H = 1
EAV

H = 0
SAV

LINE
NUMBER

1-3
4-19

20-263
264-265
266-282
283-525

1
0
0
0
1
1

1
1
0
1
1
0

1
1
1
1
1
1

0
0
0
0
0
0

F V H
(EAV)

H
(SAV)

FIELD 1
(F = 0)
ODD

FIELD 2
(F = 1)
EVEN

Gen-lock to external Syncs
The display engine is capable of gen-locking to external syncs. As described above, the video time base
generation is controlled by two counters, namely, the horizontal counter and the vertical counter. By
programming the display engine into synchronization mode (10 - gen-lock to sync. Input), these
counters will be reset based on the falling edge of incoming syncs (HSYNC and FIELD). Specifically,
the Horizontal Counter will reset to “1” one tick after the falling edge of HSYNC. Meanwhile, the
vertical counter will reset to the value programmed in the “vidFst ($0140)” register two ticks after the
falling edge of FIELD.

Video Data Encoding
The video data output and input formats supported by Aries conforms to CCIR 656 and CCIR 601.
Refer to these standards for further details.

The output data stored in Main Bus DRAM, or the corresponding CLUT entries, are always in YCrCb
form. The relationship between this and RGB is defined as follows by CCIR 601:

If R, G and B are values between 0 and 1, then
EY = 0.299 R + 0.587 G + 0.114 B
ECR = 0.713(R - EY) = 0.500 R - 0.419 G - 0.081 B
ECB = 0.564(B - EY) = - 0.169 R - 0.331 G + 0.500 B

PAGE 186 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

The conversion to 8 bit integers uses the following formulae, where the computed value is rounded to
the nearest integer.
Y = 219 EY + 16
CR = 224 ECR + 128
CB = 224 ECB + 128

Note that this implies the following about YCrCb data:

• Luminance occupies only 220 levels, with black being level 16.

• The color difference signals occupy 225 levels, with zero being level 128.

• Certain valid combinations of YCrCb coefficients do not correspond to a physical (RGB) color, and
are not allowed (see below).

• MPE software performing color space conversion from RGB will have to perform the offset of 16 on
the Y value, but not the 128 offset for Cr and Cb which is performed by store pixel, if the
corresponding chnorm bit is set in the MPE xyctl or uvctl registers.

• Cr and Cb are (R-Y) and (B-Y) scaled to have a range of ±½.

The hardware will strip out the illegal values 0 and 255 from the pixel stream, if they arise, and replace
them with 1 and 254, respectively. Other illegal values are passed through to the digital video encoder,
which may give unpredictable and non-linear results. You should make sure that your software does not
generate out-of-range values.

Note that this encoding corresponds to the MPEG-2 video bit-stream sequence extension matrix
coefficients value 6. If a different encoding is present in the MPEG-2 stream, then appropriate action (or
inaction) will have to be taken.

Illegal Color Values
Some combinations of Y, Cr and Cb do not correspond to valid NTSC and PAL values, and must be
avoided. This will not be a problem for artwork that is generated in RGB and converted, but can be a
problem for algorithmically generated colors, and also potentially for some lighting models.

You can calculate the range of strictly legal values by transforming the RGB cube into NTSC space
using the formulae above, thus:

R G B Y Cr Cb
0 0 0 16 128 128
0 0 1 41 110 240
0 1 0 145 34 54
0 1 1 170 16 166
1 0 0 81 240 90
1 0 1 106 222 202
1 1 0 210 146 16
1 1 1 235 128 128

In theory only values within this transformed cube are allowed. However, we can stand a large range
outside this, but we do have a particular problem with large Cr and Cb deviations from 128 when Y is
approaching its minimum of 16, as these can appear to be sync signals to some TV sets.

VM Labs will screen NUON applications for this issue, and if it is found we will require it to be
corrected for NUON applications.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 187

Control Registers
The registers described below control the display fetch mechanism and the video time-base generator.
These registers are programmed over the Communication Bus. . The VDG has Communication Bus ID
65 ($41).

 The communication protocol is as follows for the command packet. Note that there are two write
modes and only one read mode:

Mode 1
Long word Description
0 0-15 register address

31 set for write, clear for read
1 0-31 write data if a write command
2 unused
3 unused

Mode 2
Long word Description
0 31 must be set to 0

30 must be set to 1
29-24 register address [5:0]
23-0 write data

1 29-24 register address [5:0]
23-0 write data

2 29-24 register address [5:0]
23-0 write data

3 29-24 register address [5:0]
23-0 write data

A response packet is returned if the operation was a read. Its format is:

Long word Description
0 unused
1 0-31 read data
2 unused
3 unused

List of registers

vidCtrl (0) Display Control (0)
mode 1: $0000
mode 2: $00
Read / Write

Display control register.

Mode 1

PAGE 188 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Description
31 Reserved, write zero.
30 Active low Horizontal Sync. When this bit is set HSYNC will be active low.
28-25 Offset in 4bpp overlay. These four bits will be used as upper address bits when accessing the

CLUT in 4 bits per pixel mode.
24 Sub-picture overlay enable.
20-16 Overlay display mode
15 Overlay enable
12-11 Synchronization mode.

00 free running (VDG generates a CCIR656 stream)
01 reserved
10 gen-lock to sync inputs
11 reserved

10 Reserved, write zero.
9 Expand – expand each of the color components to include illegal CCIR656 (1 to 254) values.

In other words, if this bit is NOT set, the output CCIR656 streams will be truncated into the
valid range (see above).

8 Video enable. When this is clear, the video generator outputs synchronization pulses, but the
display is blanked.

7 Main display enable
4-0 Display mode. See the list below.

Mode 2
Bit Description
5 Expand – expand each of the color components to include illegal CCIR656 (1 to 254) values.

In other words, if this bit is NOT set, the output CCIR656 streams will be truncated into the
valid range (see above).

4 Video enable. When this is clear, the video generator outputs synchronization pulses, but the
display is blanked.

3 Reserved, write zero.
2 Active low Horizontal Sync. When this bit is set HSYNC will be active low.
1-0 Synchronization mode.

00 free running (VDG generates a CCIR656 stream)
01 reserved
10 gen-lock to sync inputs
11 reserved

vidCtrl (0) Display Control (1)
mode 2: $01
Read / Write

Display control register.

Mode 2
Bit Description
23 Sub-Picture Display Enable.
19-16 Offset in 4bpp overlay. These four bits will be used as upper address bits when accessing the

CLUT in 4 bits per pixel mode.
15 Overlay display enable.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 189

12-8 Overlay display mode.
7 Main display enable.
4-0 Display mode. See the list below.

pixHscale (0) Main Video Channel Horizontal scaling control (0)
mode 1: $0014
mode 2: $02
Read / Write

This register controls horizontal scaling. After each pixel is generated the horizontal increment is
added to the horizontal counter, and if the integer field advances then pixel pointer is advanced
by one pixel. The horizontal scale counter itself is not in this register, it is concealed and is
initialized from the initial value given here at the start of each display line. Its fractional bits
control the re-sizing filter.

Mode 1
Bit Description
31 No Filter bit – Only sub-sampling will be performed, no filter will be applied
30 Expand bit – The output will not be clipped
29-16 Horizontal scale increment (3.11 bits)
15 Linear Filter – The linear filter coefficients will be used.
14 Buffer Underflow.
12-0 Horizontal scale counter initial value (2.11 bits)

Mode 2
Bit Description
13-0 Horizontal scale increment (3.11 bits)

pixHscale (1) Main Video Channel Horizontal scaling control (1)
mode 2: $03
Read / Write

Mode 2
Bit Description
17 No Filter bit – Only sub-sampling will be performed, no filter will be applied
16 Expand bit – The output will not be clipped
15 Linear Filter – The linear filter coefficients will be used.
14 Buffer Underflow.
12-0 Horizontal scale counter initial value (2.11 bits)

pixFifo Main Video Channel FIFO Control
mode 1: $0020
mode 2: $04
Read / Write

Controls the video FIFO for the Main Video Channel display data.

Bit Description
23 Overflow of main video FIFO, for debug only.
21-17 Number of entries in the FIFO below which the FIFO become a high bus priority.

PAGE 190 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

15-11 5-bit address specifying the last word of the FIFO within the 32x128 RAM cell.
5-1 5-bit address specifying where the FIFO starts within the 32x128 RAM cell.

ovlFifo Overlay Video Channel FIFO Control
mode 1: $0024
mode 2: $05
Read / Write

Controls the video FIFO for the Overlay Video Channel display data.

Bit Description
23 Overflow of overlay video FIFO, for debug only.
21-17 Number of entries in the FIFO below which the FIFO become a high bus priority.
15-11 5-bit address specifying the last word of the FIFO within the 32x128 RAM cell.
5-1 5-bit address specifying where the FIFO starts within the 32x128 RAM cell.

subDFifo Sub-Picture FIFO Control
mode 1: $0028
mode 2: $06
Read / Write

Controls the video FIFO for the sub-picture display data.

Bit Description
23 Overflow of sub-picture data FIFO, for debug only.
21-17 Number of entries in the FIFO below which the FIFO become a high bus priority.
15-11 5-bit address specifying the last word of the FIFO within the 32x128 RAM cell.
5-1 5-bit address specifying where the FIFO starts within the 32x128 RAM cell.

subCFifo Sub-Picture control code FIFO Control
mode 1: $002C
mode 2: $07
Read / Write

Controls the video FIFO for the sub-picture display control code.

Bit Description
23 Overflow of sub-picture control FIFO, for debug only.
21-17 Number of entries in the FIFO below which the FIFO become a high bus priority.
15-11 5-bit address specifying the last word of the FIFO within the 32x128 RAM cell.
5-1 5-bit address specifying where the FIFO starts within the 32x128 RAM cell.

mainFifoS Status of Main FIFO Control
mode 1: $0030
Read

Status register that provides current FIFO pointers information.

Bit Description
21-16 6-bit specifying the count of number of entries for this FIFO
12-8 5-bit specifying the write pointer current location.
4-0 5-bit specifying the read pointer current location.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 191

ovlFifoS Status of Overlay FIFO Control
mode 1: $0034
Read

Status register that provides current FIFO pointers information.

Bit Description
21-16 6-bit specifying the count of number of entries for this FIFO
12-8 5-bit specifying the write pointer current location.
4-0 5-bit specifying the read pointer current location.

subDFifoS Status of Subpicture Data FIFO Control
mode 1: $0038
Read

Status register that provides current FIFO pointers information.

Bit Description
22-16 7-bit specifying the count of number of entries for this FIFO
12-8 5-bit specifying the write pointer current location.
5-0 6-bit specifying the read pointer current location.

subCFifoS Status of Subpicture Control FIFO Control
mode 1: $003C
Read

Status register that provides current FIFO pointers information.

Bit Description
Bit Description
22-16 7-bit specifying the count of number of entries for this FIFO
12-8 5-bit specifying the write pointer current location.
5-0 6-bit specifying the read pointer current location.

vidBord Border Color
mode 1: $0080
mode 2: $08
Read / Write

Border color. This 24-bit color value is displayed at any non-blanked pixel position that is not
part of the Main Video Channel or Overlay Video Channel display areas.

vidHcnt Video horizontal counter
mode 1: $0084
mode 2: $09
Read / Write

This may be read to determine the display refresh position, and may be written to for debug
purposes. This counter counts in 54MHz cycles, and resets every vidHlen clock cycles.

PAGE 192 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

vidHlen Video horizontal count length
mode 1: $0088
mode 2: $0A
Read / Write

This defines the length of a video line in system clock cycles. See the table below for a list of
recommended settings for PAL and NTSC display.

vidVcnt Video vertical counter
mode 1: $008C
mode 2: $0B
Read / Write

This may be read to determine the display refresh position, and may be written to for debug
purposes. This counts video lines, and resets every vidVlen lines.

vidVlen Video Vertical Count Length
mode 1: $0090
mode 2: $0C
Read / Write

This defines the height of a video field in video lines. See the table below for a list of
recommended settings for PAL and NTSC display.

pixHstart Main Video Channel Horizontal Start
mode 1: $0094
mode 2: $0D
Read / Write

Horizontal start position of the Main Video Channel bit-map pixel data display. This is value
given by a horizontal count value. See the table below for a list of recommended settings for
PAL and NTSC display.

pixHend Main Video Channel Horizontal End
mode 1: $0098
mode 2: $0E
Read / Write

Horizontal end position of the Main Video Channel bit-map pixel data display, given in the same
manner as the start. (pixHend - pixHstart) / 4 gives the number of active pixels per line. See the
table below for a list of recommended settings for PAL and NTSC display.

ovlHstart Overlay Video Channel Horizontal Start
mode 1: $009C
mode 2: $0F
Read / Write

Horizontal start position of the Overlay Video Channel bit-map pixel data display. This is value
given by a horizontal count value. To align with the main channels this should be set to pixHstart
+ 1 + n * 4 with n = integer value. Higher values of n will offset it by n pixels to the right of the

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 193

main video channel. See the table below for a list of recommended settings for PAL and NTSC
display.

ovlHend Overlay Video Channel Horizontal End
mode 1: $00A0
mode 2: $10
Read / Write

Horizontal end position of the Overlay Video Channel bit-map pixel data display, given in the
same manner as the start. See the table below for a list of recommended settings for PAL and
NTSC display.

brdHstart Border Color Horizontal Start
mode 1: $00A4
mode 2: $11
Read / Write

Horizontal start position of the non-blanked display. Any non-blanked pixel that is not within the
Main Video Channel or Overlay Video Channel bit-map areas is displayed in the border color.
This value is given by a horizontal count value. See the table below for a list of recommended
settings for PAL and NTSC display. NOTE: This register MUST be setup correctly for the
display to work.

brdHend Border Color Horizontal End
mode 1: $00A8
mode 2: $12
Read / Write

Horizontal end position of the non-blanked display, given in the same manner as the start. See
the table below for a list of recommended settings for PAL and NTSC display. NOTE: This
register MUST be setup correctly for the display to work.

pixVstart Pixel Display Vertical Start
mode 1: $00AC
mode 2: $13
Read / Write

Vertical start position of pixel data display. This is given by a vertical count value. vidAoff will
be added to this value to generate the correct value for the second field. See the table below for a
list of recommended settings for PAL and NTSC display.

pixVend Pixel Display Vertical End
mode 1: $00B0
mode 2: $14
Read / Write

Vertical end position of the pixel data display, given in the same manner as the start. pixVend
minus pixVstart gives the number of active main channel lines in a field. vidAoff will be added
to this value to generate the correct value for the second field. See the table below for a list of
recommended settings for PAL and NTSC display.

PAGE 194 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ovlVstart Overlay Video Channel Vertical Start
mode 1: $00B4
mode 2: $15
Read / Write

Vertical start position of the Overlay Video Channel bit-map pixel data display. This is value
given by a vertical count value. vidAoff will be added to this value to generate the correct value
for the second field. See the table below for a list of recommended settings for PAL and NTSC
display.

ovlVend Overlay Video Channel Vertical End
mode 1: $00B8
mode 2: $16
Read / Write

Vertical end position of the Overlay Video Channel bit-map pixel data display, given in the same
manner as the start. ovlVend minus ovlVstart gives the number of active overlay video lines in a
field. vidAoff will be added to this value to generate the correct value for the second field. See
the table below for a list of recommended settings for PAL and NTSC display.

brdVstart Border Color Vertical Start
mode 1: $00BC
mode 2: $17
Read / Write

Vertical start position of the non-blanked display. Any non-blanked pixel, which is not within the
Main Video Channel or Overlay Video Channel bit-map areas, is displayed in the border color.
This value is given by a vertical count value. vidAoff will be added to this value to generate the
correct value for the second field. See the table below for a list of recommended settings for PAL
and NTSC display. NOTE: This register MUST be setup correctly for the display to work.

brdVend Border Color Vertical End
mode 1: $00C0
mode 2: $18
Read / Write

Vertical end position of the non-blanked display, given in the same manner as the start. vidAoff
will be added to this value to generate the correct value for the second field. See the table below
for a list of recommended settings for PAL and NTSC display. NOTE: This register MUST be
setup correctly for the display to work.

vidBlen Video Blanking length
mode 1: $0100
mode 2: $19
Read / Write

This defines the length of Blanking pixels in each line. See the table below for a list of
recommended settings for PAL and NTSC display, and follow them. Use other values at your
own risk.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 195

pixPlen Main Channel Video Active Pixel length
mode 1: $0104
mode 2: $1A
Read / Write

This defines the length of active pixels in each line, and is programmed with four times that
number, so is set to 2880 for 720 pixels. This is the number of pixels going into the output
channel, and if horizontal scaling is performed it will not be the same as the number of output
pixels. In other words, this number defines the amount of DMA fetches per line

synHstart Start Position Of Horizontal Pulse
mode 1: $0108
mode 2: $1B
Read / Write

This is a value given by a horizontal count value. The actual active edge will start at count + 1
See the table below for a list of recommended settings for PAL and NTSC display.

synHend End Position Of Horizontal Pulse
mode 1: $010C
mode 2: $1C
Read / Write

This is a value given by a horizontal count value. The actual assert edge will start at count + 1.
See the table below for a list of recommended settings for PAL and NTSC display.

vidAline First Active Line Register
mode 1: $0114
mode 2: $1E
Read / Write

This value defines the first active line in the FIRST field. See the table below for a list of
recommended settings for PAL and NTSC display.

vidAlen Length Of Active Lines for first field
mode 1: $0118
mode 2: $1F
Read / Write

This value defines the number of active lines within the first (top) field. See the table below for a
list of recommended settings for PAL and NTSC display.

vidAoff Next Field Offset
mode 1: $011C
mode 2: $20
Read / Write

Offset from vidAline where the next field will start. See the table below for a list of
recommended settings for PAL and NTSC display.

PAGE 196 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

vidFline Odd Field First Line
mode 1: $0120
mode 2: $21
Read / Write

Line value for the first line of the odd field F=0. See the table below for a list of recommended
settings for PAL and NTSC display.

vidFlen Odd Field Last Line
mode 1: $0124
mode 2: $22
Read / Write

Line value for the last line of the odd field F=0. See the table below for a list of recommended
settings for PAL and NTSC display.

vidHint Horizontal Counter Value For Interrupt Position
mode 1: $0128
mode 2: $23
Read / Write

This is the Horizontal interrupt register. The value written here should be a valid horizontal count
(1 to vidHlen). Once a value is written it remains valid until a system reset or power up.

vidVint Vertical Counter Value For Interrupt Position
mode 1: $012C
mode 2: $24
Read / Write

This is the Vertical interrupt register. The value written here should be a valid vertical count (1 to
vidVlen). Once a value is written it remains valid until a system reset or power up. The hardware
will generate one interrupt per video field, but by suitably re-programming these registers on the
fly, multiple video interrupts can occur in each field.

vidInit Video Initialization Pulse
mode 1: $0130
mode 2: $25
Read / Write

This register will generate a one 54MHz-tick pulse when written to. This pulse is used to reset
the pointers for all the holding registers within each channel based upon the type of pixels.
Hence, it must be written to whenever the bits per pixel is re-defined.

vidFlush Video FIFO Flushing Pulse
mode 1: $0134
mode 2: $26
Read / Write

Writing to individual bits will either clear or keep the content of the FIFO for that channel:

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 197

Bit Description
4 Flush DMA interface holding registers. 0 – Flush, 1 - Keep
3 Flush Sub-Picture Control Channel FIFO. 0 – Flush, 1 - Keep
2 Flush Sub-Picture Data Channel FIFO. 0 – Flush, 1 - Keep
1 Flush Overlay Channel FIFO. 0 – Flush, 1 - Keep
0 Flush Main Channel FIFO. 0 – Flush, 1 - Keep

vidVrst Video Reset Pulse
mode 1: $0138
mode 2: $27
Read / Write

Writing to this location will reset the horizontal and vertical counters to their respective start
values.

vidFst Video Frame Start Line Count
mode 1: $0140
mode 2: $28
Write only

During genlock mode, when the start of an odd field is detected, the vertical counter will be set
to this value.

vidAlen2 Length Of Active Lines for second field
mode 1: $0144
mode 2: $29
Read / Write

This value defines the number of active lines within the SECOND (bottom) field. See the table
below for a list of recommended settings for PAL and NTSC display.

vidLeftEdge Left Edge starting count
mode 1: $0148
mode 2: $2A
Read / Write

When the horizontal counter matches this value, the pix_pos will start counting to define left
edge of the screen. This is to inform the Sub-Picture module where the left edge of the screen is,
since the sub-picture co-ordinates reference to the active screen rather than the sub-picture
window. It is highly recommended that one should follow the values given in the table.

ovlCtrl Overlay Video Channel Control
mode 1: $0150
mode 2: $2B
Read / Write

This register sets up various control factors in the Overlay Video Channel.

Bit Description
9 Buffer Underflow.
8 Pixel doubling. Setting this bit will allow the overlay video channel to double every pixel.

PAGE 198 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Description
7-0 Graphics Alpha. This 8-bit value will be used as the alpha blending index when displaying in

16-bit per pixel mode. Zero is opaque.

ovlPlen Overlay Video Channel Active Pixel Length
mode 1: $0160
mode 2: $2C
Read / Write

This defines the number of pixels per line to be fetched from memory for the overlay video
channel. Similar to vidPlen for the main channel.

vidHedge Ending edge of Horizontal blanking
mode 1: $0170
mode 2: $2D
Read / Write

When Hcount reaches this value, a one-tick pulse will be generated in the next tick to instruct the
Sub-Picture Control Unit to clear the holding register and to re-cycle the FIFO. This is set at 500
by default because we need to provide enough time for the software to reload the FIFO if needed.
Yet, at the same time, enough time is also given to the Sub-Picture Control to pre-fetch for the
next command. See the table below for a list of recommended settings for PAL and NTSC
display.

ovlClut Overlay Video Channel CLUT
mode 1: $0200 - $02FF
Read / Write

The corresponding register location represents the CLUT location. Each location is a 32-bit
entry with following organization:

Bit Name Description
31-24 Y Luminance value
23-16 Cr Chrominance value
15-8 Cb Chrominance value
7-0 Alpha Transparency attribute . Zero is opaque.

subCtrl Sub-Picture Control
mode 1: $0300
mode 2: $2E
Read / Write

Sub-Picture control register.

Bit Description
31-15 Reserved
14 Use Pixel Alpha. When this bit is set, the alpha value for a given pixel will be extracted from

the CLUT. Each entry in the CLUT consists of 32-bit of Y Cr Cb Alpha.
If this bit is not set, the alpha will be expanded from the associating contrast value. The
Contrast and the Alpha has opposite meanings, Hence to expand it to the proper value, it needs
to be subtracted from $F first.

13-9 Number of Pixel Control Bytes to ignore at the beginning of the line.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 199

This assumes that the "garbage control" will only be present at the FIFO at the beginning of
every line. Unless a new value is written, the same value from the last write will be used.

8-4 Number of Pixel Data Bytes to ignore at the beginning of the field.
This assumes that the "garbage data" will only be present at the FIFO at the beginning of every
field. Unless a new value is written, the same value from the last write will be used.

3-0 CLUT Select. This nibble will be used as the top 4-address lines that index the CLUT. Since
the CLUT has 256 entries, this will allow a selection of 16 different color set.

subHstart Sub-Picture Horizontal Start
mode 1: $0304
mode 2: $2F
Read / Write

Horizontal start position of the Sub-Picture bit-map pixel data display. The sub-Picture Unit will
start generating CCIR656 outputs 2 ticks after the horizontal counter reaches this value. This
value is given by a horizontal count value. This should be set to pixHstart + n * 4 with n being
the pixel offset from the main video channel. Note that the Horizontal Counter runs on the
system clock, which is assumed to be 54MHz = 2 times pixel clock. See the table below for a list
of recommended settings for PAL and NTSC display.

subHend Sub-Picture Horizontal End
mode 1: $0308
mode 2: $30
Read / Write

Horizontal end position of the Sub-Picture bit-map pixel data display, given in the same manner
as the start. This is calculated by subHstart + (number of pixels * 4) – 3. See the table below for
a list of recommended settings for PAL and NTSC display.

subVstart Sub-Picture Vertical Start
mode 1: $030C
mode 2: $31
Read / Write

Vertical start position of Sub-Picture pixel data display. This is given by a vertical count value.
See the table below for a list of recommended settings for PAL and NTSC display.

subVend Sub-Picture Vertical End
mode 1: $0310
mode 2: $32
Read / Write

Vertical end position of Sub-Picture pixel data display, given in the same manner as the start.
subVend minus subVstart gives the number of active lines in a field See the table below for a list
of recommended settings for PAL and NTSC display.

PAGE 200 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

subPcount Sub-Picture PXCTLI Count
mode 1: $0314
mode 2: $33
Read / Write

This 4-bit count gives the number of PXCTLI package to be processed, when this count is
reached, it will start from the beginning again. The default is zero.

subCVstart Sub-Picture Change Line Vertical Start
mode 1: $0328
mode 2: $34
Read / Write

Vertical start position of Sub-Picture control channel. This is given by a vertical count value. See
the table below for a list of recommended settings for PAL and NTSC display.

subCVend Sub-Picture Change Line Vertical End
mode 1: $032C
mode 2: $35
Read / Write

Vertical end position of Sub-Picture control channel, given in the same manner as the start.
subCVend minus subCVstart gives the number of active lines in a field See the table below for a
list of recommended settings for PAL and NTSC display.

subColor Sub-Picture Color Register
mode 1: $0330
mode 2: $36
Read / Write

This register allows the sub-picture color values to be accessed.

Bit Name Description
31-24 Color3
23-16 Color2
15-8 Color1
7-0 Color0

subContrast Sub-Picture Contrast Register
mode 1: $0334
mode 2: $37
Read / Write

This register allows the sub-picture contrast values to be accessed.

Bit Name Description
31-24 Contrast3
23-16 Contrast2
15-8 Contrast1
7-0 Contrast0

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 201

subPlen Sub-Picture Data Channel Active Pixel Length
mode 1: $0338
mode 2: $38
Read / Write

This defines the number of pixels (in ticks) per line to be fetched from memory for the Sub-
Picture Data channel.

subInit Sub-Picture Initialization Pulse
mode 1: $0340
mode 2: $39
Read / Write

This is the Sub-Picture Initialization pulse. It should be written to after the DMA is set up, along
with all the sub-picture settings and before the beginning of the active region of a field.

subDebug_1 Sub-Picture Debug Register
mode 1: $0344
mode 2: $3A
Read only

This is the first Sub-Picture debug register.

subDebug_2 Sub-Picture Debug Register
mode 1: $0348
mode 2: $3B
Read / Write

This is the second Sub-Picture debug register. The subSoftReset bit of this register must be
written to bring Sub-Picture out of reset, as it is active on system reset. Writing a zero (0) to the
bottom bit will take the Sub-Picture out of reset.

Bit Name Description
31-1 Reserved
0 subSoftReset Soft reset for the Sub-Picture Channel

pixReset Main Channel Reset Register
mode 1: $0018
mode 2: $3C
Read / Write: bit0 Only

This is the Soft Reset register for the Main Channel. On System reset, it is inactive. You should
set the pixSoftReset bit and then clear it again to put the Main Channel in reset state.

This should only be used in special circumstances; it should not be touched in normal operation.

Bit Name Description
31-1 Reserved
0 pixSoftReset Soft reset for the Main Channel

PAGE 202 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ovlReset Overlay Channel Reset Register
mode 1: $0154
mode 2: $3D
Read / Write

This is the Soft Reset register for the Overlay Channel. On System reset, it is inactive. You
should set the ovlSoftReset bit and then clear it again to put the Overlay Channel into reset state.

This should only be used in special circumstances; it should not be touched in normal operation.

Bit Name Description
31-1 Reserved
0 ovlSoftReset Soft reset for the Overlay Channel

NTSC/PAL settings
The display engine is built to support various formats by making the timing generator programmable.
The most likely candidates for this would be either NTSC or PAL. Once the timing generator is setup,
the associating registers should not need any further programming throughout the frames. Hence, for
the ease of programming, the following list of registers and it associating values for each format is
given.
Register Name Address NTSC PAL

vidHlen $0088/$0A 3432 3456

vidVlen $0090/$0C 525 625

brdHstart $00A4/$11 543 567

brdHend $00A8/$12 3423 3447

brdVstart $00BC/$17 10 23

brdVend $00C0/$18 264 311

vidBlen $0100/$19 536 560

synHstart $0108/$1B 3432 3456

synHend $010C/$1C 544 568

vidAline $0114/$1E 10 23

vidAlen $0118/$1F 253 287

vidAlen2 $0144/$29 252 287

vidAoff $011C/$20 263 313

vidFline $0120/$21 4 1

vidFlen $0124/$22 261 311

vidLeftEdge $0148/$2A 539 563

vidHedge $0170/$2D 500 524

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 203

For the normal case of displaying 720 pixels horizontally and either 480 lines vertically for NTSC or
576 lines vertically for PAL, the channels should be programmed to start and end as follows, this will
produce an image with all three channel filling up the entire screen:
Register Name Address NTSC PAL

pixHstart $0094/$0D 543 567

pixHend $0098/$0E 3423 3447

ovlHstart $009C/$0F 544 568

ovlHend $00A0/$10 3424 3448

subHstart $0304/$2F 543 567

subHend $0308/$30 3420 3444

pixVstart $00AC/$13 21 23

pixVend $00B0/$14 261 311

ovlVstart $00B4/$15 21 23

ovlVend $00B8/$16 261 311

subVstart $030C/$31 21 23

subVend $0310/$32 261 311

subCVstart $0320/$34 21 23

subCVend $032C/$35 261 311

Let us consider another example, the following diagram shows an NTSC 720x480 screen:

Since the Main channel fills up the entire display,

We should use these values for the main channel:

pixVstart = 21

pixVend = 21 + 240 (half a frame = one field) = 261

pixHstart = 543 (left edge of display for main channel)

pixHend = 543 + (720 x 4) = 3423

Now, for the Overlay channel,

 ovlVstart = pixVstart + 20 = 41

 ovlVend = ovlVstart + 150 (half a frame = one field) = 191

Main Channel 40 lines

 515

 360 lines
230

Overlay
Channel 300

 150

Sub-picture Data 100 lines

Sub-picture Control

PAGE 204 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

 ovlHstart = 544 (left edge of display for Overlay channel) + (515 x 4) = 2604

 ovlHend = ovlHstart + (150 * 4) = 3204

We will need to program both the data channel and the control channel for the sub-picture stream:

 For Data channel:

 subVstart = pixVstart + 180 = 201

 subVend = subVstart + 50 = 251
 subHstart = 543 (left edge of display for sub-picture channel) + (230 x 4) = 920

 subHend = subHstart + (500 x 4) = 2920

 For Control channel:

 subCVstart = subVstart + 20 = 221

 subCVend = subCVstart + 30 (half a frame = one field) = 251

Display Data Formats
The display modes that follow correspond to the value set in the video control register. The set at the
start of the list are intended for synthesized displays, such as those created by 3D rendering; the set at
the end of the list are for MPEG-2 modes.

Mode 0 – 4 bits per pixel (pixel map type 1)
This display mode is made up of pixel map type 1 data. This gives 4 bits per pixel, which are expanded
to 24 bits and an alpha value by using them as an index in a color look-up table.

Mode 1 – 16 bits per pixel (pixel map type 2)
This display mode is made up of pixel map type 2 data. This gives 16 bits per pixel, which are expanded
to 24 bits by adding zeroes in the least significant bit positions.

Mode 2 – 24-bits per pixel (pixel map type 4)
This display mode is made up of pixel map type 4 data. This gives 24 bits per pixel, plus an 8-bit control
value that is normally ignored, unless the data is used as an overlay, in which case it controls the degree
of transparency. A value of $00 corresponds to opaque, a value of $FF corresponds to transparent.

Mode 3 – 24-bits per pixel (pixel map type 6)
This display mode is made up of pixel map type 6 data. This gives 24 bits per pixel. The remaining bits
in the phrase are ignored.

Mode 4 – 16-bits per pixel (pixel map type 7)
This display mode is made up of pixel map type 7 data, i.e. the display generator uses the data for
display buffer A, as modes 7-9 represent different views of the same triple buffer packed data. The other
data is ignored.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 205

Mode 5 – 16-bits per pixel (pixel map type 8)
This display mode is made up of pixel map type 8 data, i.e. the display generator uses the data for
display buffer B. The other data is ignored.

Mode 6 – 16-bits per pixel (pixel map type 9)
This display mode is made up of pixel map type 9 data, and the display generator uses the data for
display buffer C. The other data is ignored.

Mode 7 – 16-bits per pixel (pixel map type A)
This display mode is made up of pixel map type A data, i.e. the display generator uses the data for
display buffer A, as modes A-B represent different views of the same double buffer packed data. The
other data is ignored.

Mode 8 – 16-bits per pixel (pixel map type B)
This display mode is made up of pixel map type B data, i.e. the display generator uses the data for
display buffer B, as modes A-B represent different views of the same double buffer packed data. The
other data is ignored.

Mode 9 – 8 bits per pixel (pixel map type 3)
This display mode is made up of pixel map type 3 data. This gives 8 bits per pixel, which are expanded
to 24 bits and an alpha value by using them as an index in a color look-up table.

MPEG Display Modes
The source data is stored in memory in separate Luminance and Chrominance maps in raster scan order.
The (logical) position of these samples on the display is like this:

Y6
C3

Chrominance sample (8-bit Cr & 8-bit Cb pair)

Y5

Luminance sample (8-bit Y)

Y2
C1

field 1 - field assignments for interlaced source material

field 2
field 2

field 2

field 2
field 2

field 1

field 1
field 1

field 1

field 2
field 1

Y1

Y4
C2
Y3

Y8
C4
Y7

The field assignments shown are for interlaced source material; for a frame coded picture there is no
implied frame assignment. Note that either field 1 or field 2 may be first in temporal order. This storage
format is known as 4:2:0, which seems to be short for 4:2:2 / 4:0:0.

If the source material was progressively scanned (such as a movie), then the relationship between
chrominance samples and luminance samples is straightforward, and is as shown in the picture above.

PAGE 206 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

However, if the source material was interlaced (such as the output from a video camera), then the two
fields that make up this frame are temporally separate, and care should be taken when reconstructing the
chroma to only use those chroma samples appropriate to the field currently being displayed.

In a frame picture, with frame DCT encoding, each block is composed of lines from the two fields
alternately. In a frame picture with field DCT encoding, or a field picture, each block is composed of
lines from one of the two fields. Chroma blocks are always encoded in the frame structure, that is, lines
from the two fields alternately. However, this really only affects how they are stored in memory, the
logical numbering remains as shown above. It does mean that the display generator has to understand
both organizations.

When no vertical scaling is performed, there are four possible display options, given by one of the two
modes outlined above, and depending on whether or not interpolation is required. These modes are:

Mode 16 – Progressive Scan Source, No Chroma Interpolation

Y3 & C2

Y1 & C1

Y7 & C4

Y5 & C3

Top field

Y4 & C2

Y2 & C1

Y8 & C4

Y6 & C3

Bottom field

In this mode, the conversion from the 4:2:0 format in memory to the 4:2:2 format used for display is
carried out by repeating the chrominance data in both fields.

Mode 17– Progressive Scan Source, Chroma Interpolation

Y3 & (C1 + 3C2) / 4

Y1 & C1

Y7 & (C3 + 3C4) / 4

Y5 & (C2 + 3C3) / 4

Top field

Y4 & (3C2 + C3) / 4

Y2 & C2

Y8 & (3C4 + C5) / 4

Y6 & (3C3 + C4) / 4

Bottom field

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 207

In this mode, the conversion from the 4:2:0 format in memory to the 4:2:2 format used for display is
carried out by interpolating the chroma values. Reference to the source data map above for progressive
scan will explain the 1:3 weighting of the chroma values. The first line of both fields is handled
specially.

Mode 18 – Interlaced Scan Source, No Chroma Interpolation

Y3 & C1

Y1 & C1

Y7 & C3

Y5 & C3

Top field

Y4 & C2

Y2 & C2

Y8 & C4

Y6 & C4

Bottom field

In this mode, the conversion from the 4:2:0 format in memory to the 4:2:2 format used for display is
carried out by using the nearest chrominance data in the same field as the pixel being displayed.

Mode 19 – Interlaced Scan Source, Chroma Interpolation

Y3 & (5C1 + 3C3) / 8

Approximate interpolationAccurate interpolation

Y1 & C1

Y7 & (5C3 + 3C5) / 8

Y5 & (C1 + 7C3) / 8

Top field

Y4 & (7C2 + C4) / 8

Y2 & C2

Y8 & (7C4 + C6) / 8

Y6 & (3C2 + 5C4) / 8

Bottom field

Y3 & (C1 + C3) / 2

Y1 & C1

Y7 & (C3 + C5) / 2

Y5 & C3

Y4 & (3C2 + C4) / 4

Y2 & C2

Y8 & (3C4 + C6) / 4

Y6 & (C2 + 3C4) / 4

In this mode, things start getting hairy. The correct interpolation values can be approximated to, and this
approximation is worth carrying out to save complexity in the vertical interpolation. It also gives equal
weighting to all chroma lines, which the “accurate” figures do not. Note that in both cases, the rounding
in the approximation is in the same vertical direction.

PAGE 208 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Mode 20 – Display of MPEG-1 Material
This procedure involves doubling both the horizontal and the vertical / temporal resolution of the source
material. MPEG-1 data is always progressive scan, and luminance interpolation is performed as shown
below. Chroma interpolation is not performed.

(Y1 + 3Y2) / 4 & C1

Top field

Source line

Bottom field

Y1 & C1 - special case

(Y3 + 3Y4) / 4 & C2

(Y2 + 3Y3) / 4 & C2

Y1

(C2)

(C1)

Y4

Y3

Y2

Top field

(3Y2 + Y3) / 4 & C1

(3Y1 + Y2) / 4 & C1

(3Y4 + Y5) / 4 & C2

(3Y3 + Y4) / 4 & C2

Bottom field

Sub-Picture Video Channel
The Sub-Picture channel supports the display of Sub-Picture stream as described in the “DVD
Specifications for Read-Only Disc Version 1.0”. You should read and understand the appropriate
sections of that document before reading this section.

The Sub-Picture Video Channel actually consists of two physical DMA channels. One is the data
channel (referred to as the SubD channel) and the other is the control code channel (referred to as the
SubC channel). A software process is required to set up these channels and keep track of the decoding
process. The following description of decoding sequence should help in understanding the overall
operation of this channel:

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 209

Sub-picture decoding and display sequence

MPE

.

.
PXD2
PXD1

.

.
SQT2
SQT1

.

.
2nd PXD pointer
1st PXD pointer

.

.
2nd SQT pointer
1st SQT pointer

SPUH PXD SP_DCSQT
DMA

PXD pointer
SQT pointer

VDG

PXD
FIFO

SQT
FIFO

1

3
2

4

5
6

Software will perform the following steps:

First the software will parse the pack SPU to obtain the SPU structure.

1. The packet headers and the SPU headers will provide the necessary information for the software
to store the PXD data and SQT commands in memory.

2. Based on the various SPU time stamps and the sequence, a display list is build and placed in
memory.

3. The software will then write to the DMA pointers and initiate the DMA transfers.
Hardware will perform the following steps:

4. VDG will issues request whenever the FIFO is low. Once the DMA is enable, PXD data will be
provided to the SubD FIFO and the SQT commands will be provided to the SubC FIFO.

5. Once the SPU is done, an interrupt will be sent to the MPE. The MPE will then go down the
display list for the next pointers and start from step 4 again.

The DMA will supply both the SubD and SubC channel with linear data. The SubD channel unpacks
the data according to the following Run-length compression scheme:

1. If there is a strip of 1 to 3 pixels with the same value, enter the number of the pixel in the first 2 bits
and the pixel data in the following 2 bits. The 4 bits are considered to be one unit.

d3 d2 d1 d0
Number of pixel(s) Pixel Data

2. If there is a strip of 4 to 15 pixels with the same value, specify '0' in the first 2 bits, and enter the
number of the pixels in the following 4 bits and the pixel data in the next 2 bits. The 8 bits are
considered to be one unit.

d7 d6 d5 d4 d3 d2 d1 d0

PAGE 210 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

0 0 Number of pixels Pixel Data

3. If there is a strip of 16 to 63 pixels with the same value, specify '0' in the first 4 bits, and enter the
number of the pixels in the following 6 bits and the pixel data in the next 2 bits. The 12 bits are
considered to be one unit.

d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
0 0 0 0 Number of pixels Pixel Data

4. If there is a strip of 64 to 255 pixels with the same value, specify '0' in the first 6 bits, and enter the
number of pixels in the following 8 bits and the pixel data in the next 2 bits. The 16 bits are
considered to be one unit.

d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
0 0 0 0 0 0 Number of pixels Pixel Data

5. However, if the same pixels follow to the end of the line, specify '0' in the first 14 bits and describe
the pixel data in the following 2 bits. The 16 bits are considered to be one unit.

d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
00000000000000 Pixel Data

Data coming from the SubD FIFO (part of the Video FIFO) will be unpacked upon entering the pipe.
Hence, once again, the Sub-Picture should only be used to display Sub-Picture type pixels and nothing
else.

As for the SubC channel, multiple control commands (48-bits per command) are concatenated together
to form a package. The Sub-Picture control registers need to be written to instruct the hardware about
the size and numbers of command.

The subPcount (Sub-Picture PXCTLI Count) gives the number of 48-bit command per line. The
hardware will cycle through these commands for each line. Up to 8 commands may coexist on a line.

The PXCTLI control code operates on the pixels in the SubD channel with the following format:
b47 b46 b45 b44 b43 b42 b41 b40

reserved Change Start
Pixel number
(upper bits)

b39 b38 b37 b36 b35 b34 b33 b32

Change start pixel number (lower bits)

b31 b30 b29 b28 b27 b26 b25 b24
New emphasis pixel-2

color code
New emphasis pixel-1

color code

b23 b22 b21 b20 b19 b18 b17 b16
New pattern pixel color

code
New background pixel

color code

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 211

b15 b14 b13 b12 b11 b10 b9 b8

New emphasis pixel-2
contrast

New emphasis pixel-1
contrast

b7 b6 b5 b4 b3 b2 b1 b0
New pattern pixel

contrast
New background pixel

contrast

It is very important to remember that even though the DMA treat the SubD and SubC as two separate
channels, VDG will display pixels in the SubD channel based on the control codes in the SubC channel.
Hence, they function as one unit in the VDG and any attempt to use them as separate channels is highly
discourage.

Display Fetch Mechanism
The display fetch mechanism uses a 512 byte RAM as a FIFO, in the display generator. This is a simple
pixel FIFO unless the display overlay is enabled, in which case the RAM is split into two equal FIFO
blocks. During active video, the display generator will request DMA transfers whenever either FIFO has
any space in it. This means that video will consume any spare bus bandwidth. When either FIFO runs
dangerously low, the video takes priority on the bus, and will start fetching at the end of the current slot.

Video Interface Timing
NUON includes an internal video-timing generator. This timing generator can be free running as a
master, or can be synchronized to an external Sync source.

In broadcast applications with MPEG2 transport streams, or when it is necessary to mix NUON graphics
with analog video, external synchronization is necessary. This can be achieved by locking the master
108MHz NUON clock with the 27 MHz video master (extracted from the transport stream or the
composite video signal), and bringing in external HSYNC and FIELD signals.

Video Clock Architecture and synchronization
The following block diagram shows the recommended main and video clock structure.

÷2

÷2

108MHz
PLL

54MHz System
Bus Clock

SDRAM
data clock

system
clock

SDRAM
Video clock

Reference clock from crystal,
transport decoder, or other

external timing source.

MMP-L3A

PAGE 212 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

In this clock architecture, the 108MHz PLL can be locked:

• from a reference crystal, if no external timing reference is required.

• to the recovered 27MHz MPEG2 clock from an external transport stream decoder.

• to the recovered video clock timing from an analog composite video stream.
The MPEG2 clock is used if MPEG video is being decoded and displayed using an external transport
stream decoder. Composite video can be used as a clock source if analog video is being displayed, with
a requirement for a graphics overlay. The video syncs can be used as inputs to reset the internal video
time-base, to achieve coarse locking.

The 108MHz PLL locks the timing reference signal with the VCLK signal, which is used as a master
video clock by NUON, any external processors and decoders, and the digital video encoder and mixer.

NUON divides the 108MHz clock by 2, to obtain its internal master clock, and provides this to the
System Bus as BCLK.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 213

VIDEO INPUT

NUON supports a CCIR 656 video input stream, which is transferred over the Communication Bus for
internal processing.

Video Capture
The incoming video stream is captured and transmitted over the Communication Bus. Software then
transfers it into main memory via an ISR. There are two ways this can be performed:

1. Raw form, where the incoming pixel data is directly transferred over the Communication Bus. This
is the direct CCIR 656 interleaved data stream including blanking, and the SAV and EAV data, and
requires further processing to be used as display or texture data.

2. Pixel form, where the incoming 4:2:2 pixels may be transferred as-is, as a 32-bit pixel (of which 24
are valid), or as 16-bit data by truncation. When performing truncation, dithering may be enabled to
prevent ‘banding’ artifacts.

Video capture is not required to be synchronous with the main NUON clock, and can therefore run at
any desired clock rate, subject only to the limit of how fast the data can be passed over the
Communication Bus.

To reduce bandwidth, the video input channel data may be reduced in resolution before sending over the
Communication Bus. Each field can be transmitted at half (2:1) or quarter (4:1) resolution in addition to
full resolution. This reduction can be controlled independently both horizontally and vertically and is
performed by merely discarding pixels/lines. Filtering is possible in the horizontal direction if desired;
adjacent pixels are averaged before sending. Vertically, the resolution may also be reduced by
discarding alternate fields instead of lines.

Note that the worst-case throughput requirements are considerable and will tax both the Communication
Bus and the receiving processor. The worst case condition, which is when the input stream is converted
directly to 32-bit pixels, giving an active video transfer rate requirements of 13.5 x 4 = 54 Mbytes / sec.
This figure only applies during active video, so the averaged transfer requirement is 41 Mbytes / sec.
These numbers quantify the bandwidth occupied by the actual data. In addition, each Comm Bus packet
also requires a fifth 32-bit long which holds the sender and receiver IDs and other status information.
Thus the total worst-case Comm Bus bandwidth occupied by video input is 13.5 x 5 = 67.5 Mbytes / sec
(55 Mbytes / sec average). Transfers at this rate imply receiving a Communication Bus packet on
average every 16 clock cycles, well within the capability of the Communication Bus and an MPE, as
long as no other significant use is being made of either at the same time.

Status Bits
In addition to the 16 bytes of data, each Communication Bus packet also returns several status bits.
They are described in the table below.

An overflow occurs when a video input packet becomes ready for transmission while the current packet
has yet to be sent. In this case the old packet is overwritten by the new one and is lost. Bits 0 and 1
should be ORed to determine overflow.

Bit Description
7 If this is set, the FVH values below are valid
6 F 0 = odd field 1 = even field

PAGE 214 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

5 V 0 = active line 1 = inactive line (vertical blanking)
4 H 0 = active video 1 = inactive video (horizontal blanking)
3 Set to 1 if the data in this packet is a result of a read from vinCtrl or vinRand
2 Unused (always 0)
1 Indicates an overflow occurred sometime since the last video input reset
0 Indicates an overflow just occurred during the transmission of this packet (it is possible for bit

1 to be set without bit 0 ever being set)

Bit Ordering
The table below shows how pixel data is ordered in the Communication Bus packets for the various data
types. All of these examples assume an input stream as follows:

 Time �
Cb0 Y0 Cr0 Y1 Cb1 Y2 Cr1 Y3 Cb2 Y4 Cr2 Y5 Cb3 Y6 Cr3 Y7 . . .

 Long 0 Long 1 Long 2 Long 3
 31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0

RAW Cb0 Y0 Cr0 Y1 Cb1 Y2 Cr1 Y3 Cb2 Y4 Cr2 Y5 Cb3 Y6 Cr3 Y7

4:2:2
HScale 1:1 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Cr0 Cr1 Cr2 Cr3 Cb0 Cb1 Cb2 Cb3
HScale 2:1 Y0 Y2 Y4 Y6 Y8 Y10 Y12 Y14 Cr0 Cr2 Cr4 Cr6 Cb0 Cb2 Cb4 Cb6
HScale 4:1 Y0 Y4 Y8 Y12 Y16 Y20 Y24 Y28 Cr0 Cr4 Cr8 Cr12 Cb0 Cb4 Cb8 Cb12

32-bit
HScale 1:1 Y0 Cr0 Cb0 00 Y1 Cr0 Cb0 00 Y2 Cr1 Cb1 00 Y3 Cr1 Cb1 00
HScale 2:1 Y0 Cr0 Cb0 00 Y2 Cr1 Cb1 00 Y4 Cr2 Cb2 00 Y6 Cr3 Cb3 00
HScale 4:1 Y0 Cr0 Cb0 00 Y4 Cr2 Cb2 00 Y8 Cr4 Cb4 00 Y12 Cr6 Cb6 00

16-bit*
HScale 1:1 Y0Cr0Cb0 Y1Cr0Cb0 Y2Cr1Cb1 Y3Cr1Cb1 Y4Cr2Cb2 Y5Cr2Cb2 Y6Cr3Cb3 Y7Cr3Cb3
HScale 2:1 Y0Cr0Cb0 Y2Cr1Cb1 Y4Cr2Cb2 Y6Cr3Cb3 Y8Cr4Cb4 Y10Cr5Cb5 Y12Cr6Cb6 Y14Cr7Cb7
HScale 4:1 Y0Cr0Cb0 Y4Cr2Cb2 Y8Cr4Cb4 Y12Cr6Cb6 Y16Cr8Cb8 Y20Cr10Cb10 Y24Cr12Cb12 Y28Cr14Cb14

* 16-bit data is packed with Y in bits 15-10, Cr in bits 9-5, and Cb in bits 4-0.

Video Input Control Register
The register described below controls the video input channel. This register is programmed over the
Communication Bus by a single packet. The Communication Bus identification numbers are defined in
the Communication Bus section of this document. A value of h00 in bits 31-24 of the packet’s first long
of data indicates a write into vinCtrl. The value to write is taken from bits 23-0 of that same long.

A command packet will initiate pixel transfer as specified in bits 18-16. It will wait for the start of a
specified field before transmitting, except b100, which causes transfer to start immediately. However,
this mode only makes sense when sending raw data (bits 2-0 are b000) as it has no context for
discerning EAV, SAV, or other video attributes.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 215

When video capture begins, the Communication Bus ID of the last sender that programmed vinCtrl
determines the video input stream’s destination.

Before changing vinCtrl, the Video Input module must first be reset. This is accomplished by writing a
1 into bit 20. This clears all bits in vinCtrl and places the module in a known reset state. A subsequent
write to vinCtrl will initiate video capture as desired.

The current state of vinCtrl may also be read. Sending a Communication Bus packet with a value of h80
in bits 31-24 of the packet’s first long of data indicates a read (all other bits are ignored). Care must be
taken when reading vinCtrl during video capture. If the module is trying to send a video packet at the
same time as vinCtrl is being read, one or the other may be lost.

vinCtrl Video Input Channel Control
Long word 0
Read / Write

This register controls the operation of the Video Input module.

Bit Description
20 Reset video in
18-16 Data transfer mode:

000 Do nothing (video input off)
001 Send the next odd field
010 Send the next even field
011 Send the next field whatever it is
100 Continuously stream data starting immediately
101 Continuously stream data from the start of the next odd field
110 Continuously stream data from the start of the next even field
111 Continuously stream data from the start of the next field

15 Block sending of odd fields (F=0)
14 Block sending of even fields (F=1)
13-12 Data to capture:

00 Send all incoming data
01 Send the active portion of all lines (H=0)
11 Send the active portion of active lines (H=0 and V=0)

10-8 Horizontal scale mode:
000 Transfer 1:1 (send every pixel)
001 Transfer 2:1 (send every 2nd pixel)
010 Transfer 2:1 w/filtering (send average of 2 adjacent pixels)
011 Transfer 4:1 (send every 4th pixel)
100 Transfer 4:1 w/filtering (send average of 4 adjacent pixels)

6-4 Vertical scale mode:
000 Transfer 1:1 (send every line)
001 Transfer 2:1 (send every 2nd line)
011 Transfer 4:1 (send every 4th line)

2-0 Pixel transfer mode:
000 Send raw data
001 Send packed 4:2:2 data
010 Send 32-bit pixel data
011 Send 16-bit pixel data
100 Send 16-bit pixel data (dithered)

PAGE 216 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Unused bits in the command long word must be written as zero

vinRand Video Input Random Number Register
Read only

This register is used when in 16-bit dithering mode (bits 2-0 of vinCtrl are b100). It may be read
by sending a Communication Bus packet to the Video Input module. A value of h81 in bits 31-
24 of the packet’s first long word initiates a read of vinRand (all other bits are ignored). The
same caution applies here as with reading vinCtrl; namely that the returning data may clash with
a video input packet such that one or the other is lost.

Bit Description
31-0 Random number

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 217

AUDIO OUTPUT

The NUON audio output system supports up to ten discrete output channels. Eight of these are carried
over four synchronous serial stereo data channels, which can be compatible with I2S. The other pair is
carried over an IEC 958 (S/P DIF) channel.

This capability provides support for Dolby Digital (AC-3), DTS, and some MPEG audio decoding,
which can require as many as six output channels. These channels are left, center, right, left surround,
right surround, and low frequency effects. This 6 channel arrangement is usually referred to as 5.1
channels as the low frequency effects channel is encoded with a lower bandwidth.

The additional channels allow simultaneous output of a mixed-down stereo pair, and a SPDIF output
channel carrying either stereo audio or the encoded bitstream.

IEC 958 data is intended for connection to either an external digital audio decoder or a system with its
own DACs. It can either output a stereo PCM audio pair with 16, 20 or 24 data bits; or the encoded
digital audio data.

The synchronous serial port is intended for connection to on-board DACs, providing analog audio
outputs from the system containing NUON. It can output stereo PCM, and six-channel surround PCM.
Data may be either 16-bit or 32-bit, the latter containing any desired number of significant bits, limited
only by the capability of the DACs.

The diagram below summarizes the intended audio data flow output capability:

Mix / N-2-2 /
Pro-Logic encode

Digital Audio Decode /
Synthesizer

2/6 ch.

DACs

IEC 958

encoded data

select

2 ch.

MPE software
The rectangular blocks shown in this diagram represent software functions.

Audio data may be written to these output devices either by writing directly to the audio output device
using the Communication Bus, or by setting up audio output DMA.

Buffering and Real Time Requirements
The audio output channels are all shift-register-based channels. When they are being fed by audio DMA,
a 320-byte FIFO RAM is used to overcome the effects of DMA latency. This RAM may be separated
into two logical FIFOs for S/PDIF and DAC data if required (see below).

Data may also be fed to the audio output channels directly under program control using the
Communication Bus. A buffer empty interrupt is generated whenever the shift registers are emptied. The

PAGE 218 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

program must respond to this interrupt, write to the audio data registers using the Communication Bus,
and be ready to receive another interrupt within one sample time.

Summary of audio changes for Aries 3
The changes to the audio output for Aries 3 are significant.

• Add a DMA FIFO RAM so that audio DMA is able to stand longer DMA latencies without
underflow. The FIFO RAM is 80 scalars. This should allow 8-channel, 32-bit output running at
greater than 96 KHz.

• Add a fourth I2S stereo pair available on GPIO(1), supporting a total of eight I2S output
channels, plus 2 S/PDIF channels. This allows a player to simultaneously output six channel
audio and mixed down stereo from software, or eight decoded channels if required.

• Allow S/PDIF to run at a slower sample rate than I2S, with a separate DMA channel. This
supports applications where the I2S sample rate is higher than the maximum supported S/PDIF
sample rate.

• Allow odd clock divide ratios in the clock pre-scaler, so that we can support 384fs master clock
frequencies. This is controlled by the clkPrescaleOdd bit in the extCtrl register described
below.

• Support double buffering of S/PDIF channel status, reloading from the registers written to by
software on a block boundary. This function also double buffers raw32 and rare32.

• Allow the source of the S/PDIF valid flag, user data, and channel status to be individually
selected as coming from either the stream or registers. The three rare32 bits in extCtrl are used
instead of the raw32 bit for this.

• The S/PDIF block counter can be reset by a bit in the data stream. See the blockAlignEna bit in
the extCtrl register.

Audio DMA
Audio DMA copies data stored in a DRAM buffer to the audio output devices. The DRAM buffer is a
circular buffer of programmable size that contains interleaved audio output data.

The interleaved audio output data has the restriction that the total amount of data for each sample must
be a power of two in bytes. This means the useful combinations it can transfer are:

• Two 16-bit output streams to both the IEC 958 and the synchronous serial stereo outputs.

• Four 16-bit output streams to support separate data streams to the IEC 958 and the synchronous
serial stereo outputs.

• Eight 16-bit output streams to support separate data streams to the IEC 958 and the synchronous
serial six-channel surround outputs.

• Two 32-bit output streams to both the IEC 958 outputs and the synchronous serial stereo outputs (the
less significant bits of the data are truncated as appropriate).

• Four 32-bit output streams to support separate data streams to the IEC 958 and the synchronous
serial stereo outputs.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 219

• Eight 32-bit output streams to support separate data streams to the IEC 958 and the synchronous
serial six-channel surround outputs, or can be used for eight synchronous serial stereo outputs.

If other output combinations are required then you can either transfer the data under program control
using the Communication Bus, or you can mute unused output channels with dummy data interleaved
into the output DMA buffer.

The circular buffer may be between 1K and 64K bytes. The 64K buffer size will hold enough data for
two PAL video frames of audio at 48KHz, with eight 32-bit streams, i.e. a double buffer which is
refilled once per frame as required. This is considered to be the largest possible requirement. The buffer
pointer may be read, and interrupts generated when it wraps and when it crosses the midpoint, so that it
can be treated as a double buffer.

You can send the audio interface a command to force the DMA to repeat a fetch address, or to skip a
fetch address. This may be useful for re-synchronizing audio to video by skipping or repeating samples,
although several samples will be re-used in some modes.

You can also freeze the buffer pointer, so that the same address is repeatedly read. This lets you output a
constant value.

The DMA base address and fetch pointers should only be written when DMA is disabled. The DMA
fetch pointer may be polled at any time to determine from where the next data will be read.

DMA Data Organization
DMA data is organized in one of the following repeating structures, depending on the output mode. Note
that for the 32-bit forms the data should be aligned against the MSB, i.e. the 12 LSBs are not used for
20-bit samples, and the 8 LSBs are not used for 24-bit samples.

Two 16-bit channels
Bits Word Function
31-16 0 Left channel data / IEC958 channel one / left mixed-down channel data
15-0 1 Right channel data / IEC958 channel two / right mixed-down channel data

Four 16-bit channels
Bits Word Function
63-48 0 Left channel data / left mixed-down channel data
47-32 1 Right channel data / right mixed-down channel data
31-16 2 IEC958 channel one
15-0 3 IEC958 channel two

Eight 16-bit channels
Bits Word Function
127-112 0 Left main channel data
111-96 1 Right main channel data
95-80 2 Left surround channel data
79-64 3 Right surround channel data
63-48 4 Center channel data
47-32 5 Low frequency effects channel data
31-16 6 IEC958 channel one / left mixed-down channel data
15-0 7 IEC958 channel two / right mixed-down channel data

Two 32-bit channels
Bits Long Function
63-32 0 Left channel data / IEC958 channel one / left mixed-down channel data
31-0 1 Right channel data / IEC958 channel two / right mixed-down channel data

PAGE 220 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Four 32-bit channels
Bits Long Function
127-96 0 Left channel data / left mixed-down channel data
95-64 1 Right channel data / right mixed-down channel data
63-32 2 IEC958 channel one
31-0 3 IEC958 channel two

Eight 32-bit channels
Bits Long Function
255-224 0 Left main channel data
223-192 1 Right main channel data
191-160 2 Left surround channel data
159-128 3 Right surround channel data
127-96 4 Center channel data
95-64 5 Low frequency effects channel data
63-32 6 IEC958 channel one / left mixed-down channel data
31-0 7 IEC958 channel two / right mixed-down channel data

Data Organization for separate IEC958 DMA
Note that if separate IEC958 DMA is enabled, then IEC958 data is not extracted from the main DMA
channel as shown above. In this case the channel is always 32-bit, thus:

Two 32-bit channels
Bits Long Function
63-32 0 IEC958 channel one
31-0 1 IEC958 channel two

Using Interrupts with a separate IEC958 DMA channel

When using a single DMA channel, the audio buffer in Main Bus DRAM may be maintained using the
interrupts that occur when the DMA read pointer passes the halfway and end points in the buffer. The
same mechanism can be used with a separate IEC958 DMA buffer, but certain rules must be followed.

1. No extra interrupts are generated, so you must program the sizes of the two buffers so that each
loops at the same rate. For example, if you set up the main buffer for eight 32-bit channels, and
the IEC 958 channel for two 32-bit channels, then you must set the main buffer size to four times
the size of the IEC 958 buffer.

2. You must set the laterCountWait bit in the dmaCtrl. This ensures that the interrupt does not
actually occur until both the buffer pointers have passed the halfway or end points.

Audio DMA FIFO Control
The FIFO sits between the Main Bus DMA interface logic and the data output logic.

Normally you should program the FIFO to be as large as possible. When separate IEC 958 DMA is
enabled, the FIFO should be split in a ratio corresponding to the rates at which each channel is
consuming data.

Underflow on start-up
If the FIFO underflows immediately on start-up, it may be necessary to enable audio DMA before
starting up the output stage. Normally when dmaEnable is set this starts both the DMA read process
which writes into the FIFO, and the transfer process which reads from the FIFO and writes into the

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 221

ssData registers. However, at higher sample rates, the FIFO may underflow before the first data has
been read.

In these circumstances, the dmaSepEna bit in extCtrl should be set. The dmaEnable (and dma958 if
required) should be set, followed by a pause to allow the FIFO to fill up. About 2,000 clock cycles
would be a conservative delay. After this time, or later, dmaFifoRd in extCtrl should be set to start up
the reading of samples from the FIFO.

Synchronous Serial Audio Output Channel (I2S)
The synchronous serial bit clock, SBCLK, which is derived from an external audio clock as described
below, controls audio output timing. One audio sample is then output every 16, 24 or 32 SBCLK cycles,
as shown below. The word clock, SWCLK, whose polarity is programmable, gives the framing of the
data.

Data is output on three data pins:

Pin Left function Right function
SDAT 0 Left Right
SDAT 1 Left surround Right surround
SDAT 2 Center Low frequency effects

Possible data output modes for 16-bit data are as follows:

24-bit or 32-bit sample period, left = high SWCLK, right data alignment (24-bit shown):

SDAT 0-2
Right ChannelLeft Channel

SWCLK

SBCLK

4 3 2 10 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

24-bit or 32-bit sample period, left = high SWCLK, left data alignment (24-bit shown):

SDAT 0-2
Left Channel Right Channel

SWCLK

SBCLK

4 3 2 1 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

24-bit or 32-bit sample period, left = high SWCLK, right data alignment, delayed data (24-bit shown):

SDAT 0-2
Right ChannelLeft Channel

SWCLK

SBCLK

4 3 21 10 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

24-bit or 32-bit sample period, left = high SWCLK, left data alignment, delayed data (24-bit shown):

SDAT 0-2
Right ChannelLeft Channel

SWCLK

SBCLK

4 3 2 1 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

16-bit sample period, left = high SWCLK, either data alignment:

PAGE 222 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

SDAT 0-2
Left Channel Right Channel

SWCLK

SBCLK

4 3 2 1 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

16-bit sample period, left = high SWCLK, either data alignment, delayed data:

SDAT 0-2
Left Channel Right Channel

SWCLK

SBCLK

4 3 2 1 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

Possible data output modes for 32-bit data are as follows.

32-bit sample period, left = high SWCLK:

SDAT 0-2
Right ChannelLeft Channel

SWCLK

SBCLK

4 3 2 10 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 101520 19 18 17 1625 24 23 22 2130 29 28 27 2631 20 19 18 17 1625 24 23 22 2130 29 28 27 2631
32-bit sample period, left = high SWCLK, delayed data:

SDAT 0-2
Right ChannelLeft Channel

SWCLK

SBCLK

4 3 2 10 09 8 7 6 514 13 12 11 1015 4 3 21 1 09 8 7 6 514 13 12 11 101520 19 18 17 1625 24 23 22 2130 29 28 27 2631 20 19 18 17 1625 24 23 22 2130 29 28 27 2631
Should the data ordering need to be reversed, this operation can be performed in software. The MPE
mirror instruction is suited to this task.

IEC 958 Audio Output Channel
The IEC 958 audio output channel is a single wire serial, output-only, self-clocking interface. Refer to
the IEC 958 standard documentation for further details. This interface is sometimes also known as S/P
DIF (Sony/Philips Digital Interface Format).

Unless the interface is operated in the ‘raw’ mode, described below, it is limited to operating at
consumer level, and not at professional level, because the channel status word is restricted to the first
32-bits.

This output channel can operate in two modes:

• 16-bit mode, where the interface is provided with 16-bit audio values. The validity flag is
programmable, and the user data field is fixed at zero, for every sub-frame; and the first 32 bits of
channel status for both channels of each block are programmable with the remaining bits being zero.

• 24-bit mode, where the interface is provided with 32-bit audio values whose eight LSBs are ignored.
The validity flag is programmable, and the user data field is fixed at zero, for every sub-frame; and
the first 32 bits of channel status for both channels of each block are programmable with the
remaining bits being zero.

• 32-bit ‘raw’ mode, where the interface is provided with 32-bit values corresponding to complete
sub-frames. The bits corresponding to the Sync Preamble and Parity are ignored as they are
generated by the hardware, but all other fields are programmable.

The output channel hardware formats the data according to the IEC 958 standard, and contains a block
counter so that it can correctly generate preambles. This counter can be reset.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 223

When the IEC958 channel is enabled, the preScale value in the ssCtrl register should be set to give a
clock 128 times the sample rate. The SBCLK for the synchronous serial output should be set to a half or
a quarter of this rate with the bitScale value in the ssCtrl register. This rules out the use of 24-bit
long sample period on the synchronous serial interface at the same time as IEC 958 output, although 24-
bit sample can still be output in 32-bit mode.

Audio Clocking
The clock rate, and therefore the sample rate, is derived from an audio clock input pin. This is divided to
produce:

• SBCLK, the synchronous serial bit clock. This is 64, 48 or 32 times the sample rate.

• The IEC 958 output clock. This requires two edge positions per bit, and contains 64 bits per sample;
therefore it requires a clock that is 128 times faster than the sample rate.

The interface usually has to support audio sample rates of at least 48 KHz and 44.1 KHz, with some
applications requiring other related rates. Some applications may not require a 44.1 KHz sample rate,
which will simplify the clocking requirements.

Commonly an external DAC or ADC has a fast clock requirement (often 256 times the sample rate), so
the oscillator should be run at that speed, and the pre-scaler used to give the required internal clocks.

As an example, from a 256 times sample-rate clock we can support an IEC958 output, and SBCLK at 64
or 32 times the sample rate, so the oscillator requirements are:

 256 x 48K = 12.288 MHz or
 256 x 44.1K = 11.2896 MHz

Other applications may require still faster master clocks.

This diagram shows how the audio output clocks are generated:

PAGE 224 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Note the flexibility this gives, but also the constraints imposed by the IEC 958 output. The control
values shown are programmed in the “Synchronous serial control register” shown below.

Audio Output Control Registers
The registers described below control the audio output channels. These registers are programmed over
the Communication Bus. The audio output channel is Communication Bus ID 67 ($43). The
communication protocol is as follows for the command packet:

Long word Description
0 0-15 register address

31 set for write, clear for read
1 0-31 write data if a write command
2 unused
3 unused

The response packet is returned if the operation was a read. Its format is:

X_aclk

Divide by
2 x (clkPrescale + 1)

Selected by
clkDirect

audio_clk IEC 958 (S/P DIF) encoder
Requires 128 x sample rate clock

Divide by
32, 48 or 64 (period)

X_sbclk, I2S bit clock

Divide by
1, 2 or 4 (bitScale)

Duty cycle control
given by wordClkLen

X_swclk, I2S word clock

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 225

Long word Description
0 Bits Function

0-1 0 for a read response
1 for audio input ch. 1 data
2 for audio input ch. 2 data

16-31 register address
1 0-31 read data
2 unused
3 unused

Note that audio input data packets can also be sent out, and if this function is enabled and targeted to the
same MPE that is reading a register, then the controlling software will have to differentiate the two
received packet types. See below under “Audio Inputs” for further details of the audio input data packet
format.

The control registers are:

ssCtrl Synchronous serial control register
$0000
Read / Write

Bit Name Description
31-30 period Sample period in SBCLK cycles

 0 64 bit
 1 48 bit
 2 32 bit
 3 unused

29 wordPolarity Set for left = SWCLK high, clear for right = SWCLK high
28 dataAlign Set for left aligned data, clear for right aligned data
27 dataDelay Set to delay data output one SBCLK clock cycle relative to SWCLK, clear

for no delay
26 Unused, write zero.
23 lrMute Mute left and right data (force data output to zero). This defaults to set on

reset.
22 suMute Mute surround data. This defaults to set on reset.
21 clMute Mute center and low frequency data. This defaults to set on reset.
20-14 clkPrescale This value should be one less than the half clock period of the IEC958

clock (128x the sample rate) in ACLK cycles, i.e. the divide ratio is
2*(clkPrescale+1).
Therefore, a value of 0 gives a divide by 2, and a value of 127 ($7F) gives a
divide by 256.
If the IEC958 output is not used, this may be programmed to give SBCLK
directly. See bitScale below. It can also be by-passed, see clkDirect below,

13 clkPolarity Set for output data and word clock changing on a falling edge of SBCLK,
clear to have them changing on a rising edge.

12 clkDirect Set for the ACLK input to be used directly as the audio output clock.
clkPrescale is ignored if this is set.

11-10 wordClkLen Allows some alternative word clock duty cycles, with the high period
controlled as follows:
 0 the first half of the sample period (normal)
 1 the first bit clock of the sample period
 2 the first two bit clocks of the sample period

PAGE 226 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Name Description
3 the first three bit clocks of the sample period

Note that if wordPolarity is clear, then this controls the length of the low
period of the signal.

9-8 bitScale This gives the SBCLK rate from the output of the clkPrescale divider
above. When the IEC958 output is enabled this will have to be set to divide
by 2 if period is 64 bits, and divide by 4 if period is 32 bits.
 0 divide by 1 (no scaling)
 1 divide by 2
 2 divide by 4

7 aCntReset When this bit is set, the word framing counters are all set to zero and held
until this bit is released. This is for special circumstances only.

6 pCntReset When this bit is set, the audio clock pre-scale counter is set to zero and held
until this bit is released. This is for special circumstances only.

5 sCntReset When this bit is set, the IEC958 counters are all set to zero and held until
this bit is released. This is for special circumstances only.

4-0 Unused, write zero.

extCtrl Extended synchronous serial control register
$0001
Write Only

Bit Name Description
31 iecMute Mute IEC958 data channel to all zeroes. This defaults to zero (not muted)

on reset for compatibility with Aries 1 & 2.
This function is available in Aries 3 or higher only.

30 mdMute Mute the mixed-down stereo I2S data channel. This defaults to one (muted)
on reset.
This function is available in Aries 3 or higher only.

29 clkPrescaleOdd This modifies the behavior of the clock pre-scaler controlled by the
clkPrescale value. When this bit is set, the clock high time is extended by
one clock over the clock low time, so that the high time is clkPrescale+2
clock cycles, and the low time is clkPrescale+1 clock cycles.
This function is available in Aries 3 or higher only.

28 chstPipeline This makes the S/PDIF channel status double-buffered, so the output values
are only re-loaded from the values written to by software on a block
boundary. If this bit is clear the values written to by software are used
immediately on a change, as Aries2 and below.
This function also double buffers raw32 and rare32.
This function is available in Aries 3 or higher only.

27-25 rare32 These three bits allow a finer level of control over the raw32 function in
iecCtrl. They allow the source of the valid bit, the user data, and the
channel status to be individually controlled. The data32 flag must be set,
and the raw32 flag must be clear for these to operate, in which case they
works as follows:

25 when set, the valid flag comes from the sample data stream,
when clear it comes from the valid flag in iecCtrl.

26 when set, the user data field comes from the sample data
stream, when clear it is set to zero.

27 when set, the channel status comes from the sample data
stream, when clear it comes from the software programmed
channel status registers.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 227

Bit Name Description
24 dmaSepEna This allows the read channel from the FIFO to be separately enabled from

the write half. When clear, both DMA itself, and FIFO reads are enabled by
dmaEnable. When set, dmaFifoRd needs to be set before FIFO reads will
start. This allows DMA to be started up to fill the FIFO before output starts.
This mechanism should not be necessary, use the preventFifoUnderflow
flag in fifoCtrl5 instead.

23 dmaFifoRd When DMA and FIFO reads are separately enabled by the dmaSepEna,
then this has to be set before data will be read from the FIFO into the
ssData registers. dmaEnable (and dma958 if required) have to be set
before this.

22 blockAlignEna When this bit is set, and the IEC 958 output channel is running in 32-bit
mode (data32 set), then a one in bit position zero of the data for sub-frame
zero (channel 1) will reset the block counter aligned to this sample.
This function is not compatible with either leftAlign32 or rightAlign32.

iecCtrl IEC 958 control register
$0008
Write only

This register controls the IEC 958 interface.

Bit Name Description
31 bCntRst Block counter reset. When a one is written to this bit, the block counter will

be set to zero when the next value is written to IEC_DATA2 or when the
next DMA transfer occurs, so the next pair of values written will be the
start of a block. Writing a zero has no effect.

30 enable958 Must be set for data transfer to occur. When this bit is clear zero is output
on the data channel.

29 data32 Set for 32-bit mode – this allows sample values of up to 24 bits to be
output, and in conjunction with raw32 allows the valid flag, user data
channel, and channel status bits to be set by applications. Valid bits in the
long-word correspond to their positions in the sub-frames, i.e. bits 4-27. and
the other data is ignored. The leftAlign32 and rightAlign32 bits below
allow other data positions.
When this is clear, the sixteen bit samples have 8 zeroes added to the LSBs
to give the 24-bit output words.

28 raw32 Should be set only when data32 is set. Allows user programming of the
control bits. When this is clear, the user data channel outputs zeroes, and
the channel status control word is output every block followed by zeroes.

27 valid Validity flag when raw32 is clear. Defaults to set (not valid) on reset. This
will take effect from the next sub-frame.

26 leftAlign32 If this bit is set, in conjunction with data32 but not raw32, then the 24 data
bits are considered left aligned in the long-word in memory, i.e. the MSB is
in bit 31.
This function is available in Aries 2 or higher only.

25 rightAlign32 If this bit is set, in conjunction with data32 but not raw32, then the 24 data
bits are considered right aligned in the long-word in memory, i.e. the LSB
is in bit 0.
This function is available in Aries 2 or higher only.

24-23 slow958 These bits allow the IEC 958 output channel to be operated more slowly
than its default rate of one sample every 128 audio_clk cycles. This is
normally used in conjunction with the dma958 function.

PAGE 228 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

 00 128 clocks per frame, as Aries 1-2
 01 256 clocks per frame
 10 384 clocks per frame
 11 512 clocks per frame
This function is available in Aries 3 or higher only.

2-0 subdIntVal This is a mechanism for generating interrupts 2^n times slower than the
buffer refill interrupt (the one enabled by dmaSampInt), where n is between
1 and 7.
A value of zero disables it. A value of 1 causes an interrupt every second
buffer refill, 2 every fourth, 3 every eighth up to 7 every 128 buffer refills.
Non zero in these three bits is enough to enable the interrupt.

dmaCtrl DMA control
$002C
Read / Write

This register controls the audio output DMA channel.

Bit Name Description
20 laterCountWait When this bit is set, the dmaWrapInt and dmaHalfInt interrupts will be

delayed until both the buffer pointers have met the condition. If this bit is
clear, then the interrupts are generated off only the main DMA pointer.

19 dma958 Enables separate DMA channel for S/PDIF data.
18-16 dmaSBuffer Circular buffer size for optional separate S/PDIF audio DMA

 0 Do not advance from base address
 1 1K / $400 bytes
 2 2K / $800 bytes
 3 4K / $1000 bytes
 4 8K / $2000 bytes
 5 16K / $4000 bytes
 6 32K / $8000 bytes
 7 64K / $10000 bytes.

13 dmaMode MSB of dmaMode, see below for encoding.
12 dmaStall Sample stall. When this bit is set, the fetch pointer will not advance after

the next fetch. This bit is cleared when the stall has occurred by the
hardware, and another stall command can be issued. This may not be set
at the same time as the skip bit below.

11 dmaSkip Sample skip. When this bit is set, the next fetch pointer advance is two
samples. When skip occurs the hardware will clear this bit and another
skip command can be issued. This may not be set at the same time as the
stall bit above.

10 dmaSampInt Enable DMA buffer empty interrupt. This may be used if audio out is
being driven by Communication Bus data instead of DMA. It can be
treated as a request to write new data to the audio output data registers.

9 dmaHalfInt Enable audio interrupt when buffer pointer passes half the buffer size.
8 dmaWrapInt Enable audio interrupt when buffer pointer wraps. Note that if you enable

this interrupt then an ‘extra’ one will occur whenever the audio buffer
base address register is written (if DMA is not enabled it will occur when
DMA is first enabled after a buffer base address register write).

7-5 dmaMBuffer Circular buffer size for main audio DMA
 0 Do not advance from base address
 1 1K / $400 bytes
 2 2K / $800 bytes

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 229

 3 4K / $1000 bytes
 4 8K / $2000 bytes
 5 16K / $4000 bytes
 6 32K / $8000 bytes
 7 64K / $10000 bytes.

13,4-3 dmaMode DMA mode, as follows (see above for details):
 0 two 16-bit output streams
 1 four 16-bit output streams
 2 two 32-bit output streams
 3 eight 16-bit output streams
 4 reserved for future use
 5 reserved for future use
 6 eight 32-bit output streams.
 7 four 32-bit output streams

2-1 dmaPriority Audio DMA bus priority. Values of 0-3 are valid, 0 implies priority 4 and
should only be used in extreme circumstances.

0 dmaEnable Enable audio output DMA.

iecChst0 IEC 958 Channel status control word 0
$000C
Write only

IEC 958 Channel status control word for normal (not raw) mode. This is output as the first 32
bits of the channel status on sub frame 0 every block, with the least significant bit first. The
remaining bits are forced to zero.

iecChst1 IEC 958 Channel status control word 1
$0010
Write only

IEC 958 Channel status control word for normal (not raw) mode. This is output as the first 32
bits of the channel status on sub frame 1 every block, with the least significant bit first. The
remaining bits are forced to zero.

ssData0 Audio output data long-word 0
$0018
Write Only

This register allows audio output data to be written using the Communication Bus instead of
DMA. The entire audio buffer must always be written whatever the output mode.

ssData1 Audio output data long-word 1
$001C
Write Only

This register allows audio output data to be written using the Communication Bus instead of
DMA. The entire audio buffer must always be written whatever the output mode.

PAGE 230 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ssData2 Audio output data long-word 2
$0020
Write Only

This register allows audio output data to be written using the Communication Bus instead of
DMA. The entire audio buffer must always be written whatever the output mode.

ssData3 Audio output data long-word 3
$0024
Write Only

This register allows audio output data to be written using the Communication Bus instead of
DMA. The entire audio buffer must always be written whatever the output mode.

ssData4 Audio output data long-word 4
$0030
Write Only

This register allows audio output data to be written using the Communication Bus instead of
DMA. The entire audio buffer must always be written whatever the output mode.

ssData5 Audio output data long-word 5
$0034
Write Only

This register allows audio output data to be written using the Communication Bus instead of
DMA. The entire audio buffer must always be written whatever the output mode.

ssData6 Audio output data long-word 6
$0038
Write Only

This register allows audio output data to be written using the Communication Bus instead of
DMA. The entire audio buffer must always be written whatever the output mode.

ssData7 Audio output data long-word 7
$003C
Write Only

This register allows audio output data to be written using the Communication Bus instead of
DMA. The entire audio buffer must always be written whatever the output mode.

dmaMBase DMA buffer base address for main audio DMA
$0028
Write Only

DMA base address for main audio DMA transfers. This is always used when audio DMA is
enabled, and either points at the buffer for all audio data; or if separate SPDIF DMA is enabled,
then this points at the I2S data.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 231

This pointer must lie on a boundary aligned to the current buffer size, i.e. a 4K buffer should lie
on a 4K boundary. Note that buffer size 0 must lie on a 1K ($400) byte boundary.

dmaSBase DMA buffer base address for SPDIF audio DMA
$0029
Write Only

DMA base address for optional separate SPDIF audio DMA transfers. This must lie on a
boundary corresponding to the current buffer size. Buffer size 0 must lie on a 1K ($400) byte
boundary.

This pointer must lie on a boundary aligned to the current buffer size, i.e. a 4K buffer should lie
on a 4K boundary. Note that buffer size 0 must lie on a 1K ($400) byte boundary.

dmaMPointer DMA main channel fetch pointer
$0030
Read Only

DMA main channel fetch pointer. This is the offset address from the base pointer where the next
DMA data will be read.

dmaSPointer DMA SPDIF channel fetch pointer
$0031
Read Only

DMA SPDIF channel fetch pointer. This is the offset address from the base pointer where the
next DMA data will be read.

ssData8 Audio output data long-word 8
$0040
Write Only

This register allows audio output data to be written using the Communication Bus instead of
DMA. This register is only used when dma958 is set.

ssData9 Audio output data long-word 9
$0044
Write Only

This register allows audio output data to be written using the Communication Bus instead of
DMA. This register is only used when dma958 is set.

fifoCtrl0 Audio DMA FIFO Control Register 0
$0080
Read / Write

This register selects the FIFO size for the main and S/PDIF FIFO channels, and the maximum
DMA size.

Bit Name Description
22-16 fifoMaxDMA Defines the largest DMA transfer that can be requested by the FIFO, in

PAGE 232 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

scalars. The default value is eight.
6-0 fifoBreak Defines the first FIFO location used for the S/PDIF FIFO. All scalar

addresses starting from location zero to one less than this are used for the
main FIFO, all scalars from this address to the top. The FIFO is $50 scalars
long, and the default value for this register is $08.

fifoCtrl1 Audio DMA FIFO Control Register 1
$0081
Read / Write

This register selects the minimum DMA size for the main FIFO channels, and level below which
the main FIFO is considered dangerously low and takes priority for DMA.

Bit Name Description
31-23 unused Write zeroes.
22-16 fifoMMinDMA Defines the smallest DMA transfer that can be requested by the FIFO for

the main DMA channel, in scalars. The default value is eight scalars.
15-7 unused Write zeroes.
6-0 fifoMLow Defines the level in scalars at which the main FIFO is considered

dangerously low. Normally the two DMA channels will alternate for
memory access, when one is below its low threshold and the other is not,
then the low one will take priority. The default value is eight scalars.

fifoCtrl2 Audio DMA FIFO Control Register 2
$0082
Read / Write

This register selects the minimum DMA size for the S/PDIF FIFO channels, and level below
which the S/PDIF FIFO is considered dangerously low and takes priority for DMA.

Bit Name Description
31-23 unused Write zeroes.
22-16 fifoSMinDMA Defines the smallest DMA transfer that can be requested by the FIFO for

the S/PDIF DMA channel, in scalars. The default value is eight scalars.
15-7 unused Write zeroes.
6-0 fifoSLow Defines the level in scalars at which the S/PDIF FIFO is considered

dangerously low. Normally the two DMA channels will alternate for
memory access, when one is below its low threshold and the other is not,
then the low one will take priority. The default value is eight scalars.

fifoCtrl3 Audio DMA FIFO Control Register 3
$0083
Read / Write

This register allows the FIFO pointers for the main DMA channel FIFO to be read from and
written to. If audio DMA is stopped and restarted then these should be cleared to zero. If these
pointers are equal then the FIFO is empty.

Bit Name Description
31-23 unused Write zeroes.
22-16 fifoMRptr This pointer points to the first unread scalar location in the main FIFO.
15-7 unused Write zeroes.
6-0 fifoMWptr This pointer points to the next scalar location to be written in the FIFO.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 233

fifoCtrl4 Audio DMA FIFO Control Register 4
$0084
Read / Write

This register allows the FIFO pointers for the S/PDIF DMA channel FIFO to be read from and
written to. If S/PDIF audio DMA is stopped and restarted then these should be set the the value
written into fifoBreak. If these pointers are equal then the FIFO is empty.

Bit Name Description
31-23 unused Write zeroes.
22-16 fifoSRptr This pointer points to the first unread scalar location in the S/PDIF FIFO.
15-7 unused Write zeroes.
6-0 fifoSWptr This pointer points to the next scalar location to be written in the S/PDIF

FIFO.

fifoCtrl5 Audio DMA FIFO Control Register 5
$0085
Read / Write

This register allows the detection or prevention of FIFO underflow. It is not expected that the
FIFO will underflow in normal operation if programmed correctly, but should this occur
underflow will be flagged here.

It is conceivable that the FIFO could underflow on start-up, as it is initially empty and has less
then one sample time to fetch the correct data. If this occurs then the preventFifoUnderflow flag
should be set to avoid this causing problems such as clicks in the output channel.

Bit Name Description
31 Munderflow Flags that the main DMA channel FIFO has underflowed.
30 Sunderflow Flags that the S/PDIF DMA channel FIFO has underflowed.
29 underflowClr Writing a 1 to this bit will clear the underflow flags. Writing a zero

has no effect, and this bit is always read as zero.
28 preventFifoUnderflow When this bit is set, the FIFO will not underflow. Instead, transfer

from the FIFO to the ssData holding registers is disabled if there is
less then eight scalars in the main FIFO at the point data is
requested. Similarly, SPDIF DMA FIFO reads are disabled if less
then 2 scalars exist in its FIFO.
When this occurs the previous sample(s) are repeated.

28-0 unused Write zeroes.

fifoRAM Audio DMA FIFO Direct Access
$1000 - $104F
Read / Write

This register block allows the FIFO to be directly written to and read from. This is provided for
diagnostic purposes.

PAGE 234 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

AUDIO INPUTS

NUON supports two stereo audio input channels (referred to as channels 1 and 2) over two independent
synchronous serial interfaces, which can be run in a mode compatible with I2S. These interfaces are not
connected to the audio output channel, so all three can be run at different sample rates if required.

Pins associated with each channel are:

1. The bit clock: data and word clock are sampled on either a rising or falling edge of this.

2. The word clock: this is used to frame the data in a variety of programmable ways.

3. The data input: the serial input stream, always MSB first, may contain pad bits.

4. Over-sample clock: where a higher clock rate is need from the internal timing (channel 1 only).

There is no DMA associated with this channel, as it operates entirely over the Communication Bus.
When an audio input channel is enabled it is programmed with the Communication Bus address of the
processor which will receive the audio data. The audio input controller will then transfer a pair of
samples every time they are received. The receiving processor must be able to receive sample pairs over
the Communication Bus at sample rate, which should be straightforward.

Each receiver port supports much the same set of serial data protocols as the transmitter, with some
greater flexibility. Left data alignment means that the receiver uses the first 16 bits that follow an edge
on word clock; right data alignment means that the receiver uses the 16 bits that precede an edge on
word clock. This means that the receiver does not care how long the period is between edges on word
clock.

The receiver can also be programmed to accept data framing where the start or end of the data word is
some number of AI_BCLK cycles after the edge on AI_WCLK. This is referred to as delayed data
mode.

Left = high AI_WCLK, right data alignment:

AI_DAT
Right ChannelLeft Channel

AI_WCLK

AI_BCLK

4 3 2 10 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

Left = high AI_WCLK, left data alignment:

AI_DAT
Right ChannelLeft Channel

AI_WCLK

AI_BCLK

4 3 2 1 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 10 1515

Delayed data relative to AI_WCLK cases are not illustrated here.

The over-sample clock is used when timing is being generated from ACLK, and it gives the output the
clock pre-scaler. It is only available from Audio Input Channel 1, so these channels should be set to the
same pre-scale value if both require this function. Its phase relationship to the bit clock of channel 2 is
not defined.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 235

Audio Input Timing
An audio input channel can be configured as a timing master or slave. It defaults to being a slave, where
its timing is derived from an external source, however, it may also be a timing master. As a master, it
generates the bit and word clocks, and can also generate a higher frequency over-sample clock, used by
some ADCs and Codecs. This is available on one of the GPIO pins.

The audio input clocking is generated thus:

X_aclk

Divide by
2 x (clkPrescale + 1)

Selected by
internClk

Divide by
32, 48 or 64 (period)

X_ai_bclk, I2S bit clock

Divide by
1, 2 or 4 (bitScale)

Duty cycle control
given by wordClkLen

X_swclk, I2S word clock

X_ai_bclk

Selected by
aoutTiming

sbclk, audio out bit clock

Selected by
clkDirect

0 1

1 0

10

ainEna

Data Capture
Data capture is independent of the clocking scheme outlined above, and is triggered by edges on the
word clock. There are two operating modes, controlled by the ssyncMode bit:

PAGE 236 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

0 Data is captured dataDelay clock cycles after a transition on the word clock. Capture means that
the contents of a free running shift register are transferred to the capture register for left or right
data, depending on the polarity of the edge. So a delay of zero means that the 16-bits previous to
the edge are captured.

1 Left data is captured dataDelay after the rising edge (or falling edge if wordPolarity is clear)
of the word clock, and then the right data is captured (dataDelay2 + 2) cycles after that. This
allows data to be captured from a stream where the word clock is a pulse, as opposed to an even
duty cycle.

Audio Input Channel 2 Pins
The second audio input channel is available as a secondary function on some of the GPIO pins, as
shown in the table below. Refer to the “Miscellaneous IO Controller” section of this document for
information on how to enable this function onto these GPIO pins.

GPIO Description
4 Second audio input channel data
5 Second audio input channel bit clock
6 Second audio input channel word flag

Audio Input Control Registers
You have to send Communication Bus packets to control the audio input hardware. This is part of the
audio output command register mechanism described above, and the addresses given here are in that
space.

ain1Clock Audio input channel 1 clocking
$0100
Write only

This register controls how the audio input channel timing is derived.

The internal timing generator, if used, is quite separate to that in the audio output channel (which
can also be used here). Timing is derived from ACLK, the audio master clock input pin, and is
divided to generate AICLK, which may be output as an over-sample clock or used directly as the
bit clock, AIBCLK. AIBCLK can be a simple integer sub-multiple of AICLK, if required.

Bit Name Description
31 internClk Enable internal timing generators. This derives the bit and word clocks as

from the internal timing generators. Power on default is off. When this bit is
clear, audio timing is determined externally, whatever the other settings in
this register are.

30 aoutTiming When internal clock timing is set, when this bit is set the timing is derived
directly from the audio output channel, when clear the audio input timing
generation is used.

26-20 clkPrescale This is the clock pre-scale value for the audio input channel timing
generator. It runs from ACLK, the audio clock. This value should be one
less than the half clock period of either the over-sample clock (if used), or if
the over-sample clock function is not used, this may be programmed to give
AI_BCLK directly. See bitScale below. It can also be by-passed, see

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 237

Bit Name Description
clkDirect below,

19 clkDirect Set for the ACLK input to be used directly as the audio input clock.
clkPrescale is ignored if this is set.

17-16 bitScale This gives the AI_BCLK rate from the output of the clkPrescale divider
above.
 0 divide by 1 (no scaling)
 1 divide by 2
 2 divide by 4

14-13 period Sample period in AI_BCLK cycles
 0 64 bit
 1 48 bit
 2 32 bit
 3 unused

ain1Data Audio input channel 1 data format
$0104
Write only

Bit Name Description
31 ainEna Enable audio input bit clock and word strobe pins as outputs. This should

be set if using the internal timing generators to act as a master, and should
be clear if an external timing source is used that the interface is a slave.

30 wordPolarity Set for left data latched on or sometime after an AIWCLK rising edge, clear
for this to be the right data. Left data is always the word received first, and
so in some circumstances the channels may require reversing.

29-24 dataDelay The input data is moved into a 16-bit shift register. This value gives the
number of bit clocks after an edge on word clock that this shift register data
is captured into the left or right data registers. It should be set to zero for
“right” data alignment, and to 16 for “left” data alignment. One should be
added to the values if the data framing is delayed one bit cycle relative to
the word clock. Normally values between 0 and 31 are used. Valid values
are 0-62.
A value of 63 may be used here to disable audio input.

23 clkPolarity Set for input data and word clock captured on a falling edge of AI_BCLK,
clear to have them captured on a rising edge. This also inverts the clock
output on X_ai_bclk when enabled.

22-16 ainTarget Communication Bus address to return data to. Audio data, if enabled, will
then be sent to the sender of this command.

15 ainFlush This acts as a soft reset for the audio input capture logic. If it is set to one
the capture logic is reset to its power-on state until this bit is released.

14 ssyncMode When this bit is set the word clock is assumed to be a single pulse instead
of an even duty-cycle signal.
Left data is captured dataDelay after the rising edge (or falling edge if
wordPolarity is clear) of the word clock, then right data is captured
(dataDelay2 + 2) cycles after that. If this bit is clear, then dataDelay2 is
ignored.

13-8 dataDelay2 Offset from the dataDelay capture point for left data to the capture point of
right data, minus two. Normally this will be 14 or 30. Valid values are 0-62.

7 clkIntPol This allows the polarity of the capture bit clock to be inverted
independently of the output clock when the audio input channel is the
timing master. This signal is exclusive-ORed with the clkPolarity control

PAGE 238 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

before it is applied to the capture clock, i.e. if this bit and clkPolarity are
the same, data is captured on a rising edge; if they are different data is
captured on a falling edge.
This function is available in Aries 2 only.

ain2Clock Audio input channel 2 clocking
$0200
Write only

This register controls how the audio input channel timing is derived.

The internal timing generator, if used, is quite separate to that in the audio output channel (which
can also be used here). Timing is derived from ACLK, the audio master clock input pin, and is
divided to generate AICLK, which may be output as an over-sample clock or used directly as the
bit clock, AIBCLK. AIBCLK can be a simple integer sub-multiple of AICLK, if required.

Bit Name Description
31 internClk Enable internal timing generators. This derives the bit and word clocks as

from the internal timing generators. Power on default is off. When this bit is
clear, audio timing is determined externally, whatever the other settings in
this register are.

30 aoutTiming When internal clock timing is set, when this bit is set the timing is derived
directly from the audio output channel, when clear the audio input timing
generation is used.

26-20 clkPrescale This is the clock pre-scale value for the audio input channel timing
generator. It runs from ACLK, the audio clock. This value should be one
less than the half clock period of either the over-sample clock (if used), or if
the over-sample clock function is not used, this may be programmed to give
AI_BCLK directly. See bitScale below. It can also be by-passed, see
clkDirect below,

19 clkDirect Set for the ACLK input to be used directly as the audio input clock.
clkPrescale is ignored if this is set.

17-16 bitScale This gives the AI_BCLK rate from the output of the clkPrescale divider
above.
 0 divide by 1 (no scaling)
 1 divide by 2
 2 divide by 4

14-13 period Sample period in AI_BCLK cycles
 0 64 bit
 1 48 bit
 2 32 bit
 3 unused

ain2Data Audio input channel data format
$0204
Write only

Bit Name Description
31 ainEna Enable audio input bit clock and word strobe pins as outputs. This should

be set if using the internal timing generators to act as a master, and should
be clear if an external timing source is used that the interface is a slave.

30 wordPolarity Set for left data latched on or sometime after an AIWCLK rising edge, clear
for this to be the right data. Left data is always the word received first, and

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 239

so in some circumstances the channels may require reversing.
29-24 dataDelay The input data is moved into a 16-bit shift register. This value gives the

number of bit clocks after an edge on word clock that this shift register data
is captured into the left or right data registers. It should be set to zero for
“right” data alignment, and to 16 for “left” data alignment. One should be
added to the values if the data framing is delayed one bit cycle relative to
the word clock. Normally values between 0 and 31 are used. Valid values
are 0-62.
A value of 63 may be used here to disable audio input.

23 clkPolarity Set for input data and word clock captured on a falling edge of AI_BCLK,
clear to have them captured on a rising edge. This also inverts the clock
output on X_ai_bclk when enabled.

22-16 ainTarget Communication Bus address to return data to. Audio data, if enabled, will
then be sent to the sender of this command.

15 ainFlush This acts as a soft reset for the audio input capture logic. If it is set to one
the capture logic is reset to its power-on state until this bit is released.

14 ssyncMode When this bit is set the word clock is assumed to be a single pulse instead
of an even duty-cycle signal.
Left data is captured dataDelay after the rising edge (or falling edge if
wordPolarity is clear) of the word clock, then right data is captured
(dataDelay2 + 2) cycles after that. If this bit is clear, then dataDelay2 is
ignored.

13-8 dataDelay2 Offset from the dataDelay capture point for left data to the capture point of
right data, minus two. Normally this will be 14 or 30. Valid values are 0-62.

7 clkIntPol This allows the polarity of the capture bit clock to be inverted
independently of the output clock when the audio input channel is the
timing master. This signal is exclusive-ORed with the clkPolarity control
before it is applied to the capture clock, i.e. if this bit and clkPolarity are
the same, data is captured on a rising edge; if they are different data is
captured on a falling edge.
This function is available in Aries 2 only.

Using Audio Input Channel 2 to connect to a CD or DVD drive
The second audio input channel may also be used as an interface to a CD or DVD drive. This may be
either the primary interface to the drive, or as a secondary interface to the CDI. Where it is an additional
I2S interface, it will normally operate in standard audio input mode. When it is the primary interface, it
acts as a front-end to the CDI, reformatting the I2S data into an 8-bit parallel stream suitable for the CDI
unit.

Data may therefore be passed either directly over the Communication Bus to an MPE, or via the CDI
unit. It is possible to lock it in the mode where data is passed through the CDI.

If this channel is the primary interface to the drive, certain CDI pins may be used by this interface, as
follows:

X_casdata Data error flag
X_careq Sector sync flag
X_cvenab CD sub-code data

PAGE 240 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Driving the CDI Interface from Audio Input Channel 2
Audio input channel 2 can also be used to send data to the CDI. The register below controls this
function. This mechanism can optionally detect two special long words so that a block structure can be
super-imposed on the data-stream. If the “header” long-word is encountered in the data-stream then the
first byte of it is flagged to the CDI as being the top byte of the block. If an “escape” long-word is
encountered in the data stream then the next long-word is treated as regular data whatever its contents.
Therefore “header” in the normal data stream should be replaced by “escape – header”, and “escape”
in the data stream should be replaced by “escape – escape”.

Code Hex Value
Escape 7E95D5B6

Header A1400796

ain2Special Audio input channel 2 special function control
$0208
Write only

This register controls how audio input channel 2 delivers data to the CDI.

Bit Name Description
31 lock When this bit is set, audio input channel 2 will not send data over the

Communication Bus. This bit may be set by software, but can only be
cleared by a power-on reset.

7 v4CapPol This bit control on which phase of WS the captured V4 codes are passed on
to the Communication Bus interface.

6 cdiErrExt When this bit is set, the error flag passed to the CDI is captured from the
CDI casdata pin. When this bit is clear, no errors are flagged.

5 cdiHdrExt When this bit is set, the header mechanism described above is over-ridden,
and the header flag passed to the CDI is instead captured from the CDI
careq pin.

4 cdiHdrPass When this bit is set the “header” data pattern is passed through to the CDI.
Start of block is then flagged on this long-word as opposed to the one that
follows it.

3 cdiEscPass When this bit is set the “escape” data pattern is passed through to the CDI.
2 cdiEnable When this bit is set, data transfer is enabled to the CDI. Data will no longer

be sent over the Communication Bus.
1-0 cdiEndian These control the byte ordering of the data sent to the CDI. Bit 0 swaps

bytes within words, bit 1 swaps words.

Audio Input Communication Bus Packet Format
Communication Bus packets are used to pass audio input data to the MPEs. Communication Bus packets
can also be sent in response to register reads, and these should be separated in software.

The packet format is:

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 241

Long word Bits Description
0-1 0 for a read response

1 for audio input ch. 1 data
2 for audio input ch. 2 data

2-5 unused
6-15

Extended status data for audio input channel 2, zero for other packets
6-7 right sync data
8-9 right flag data
10-11 left sync data
12-13 left flag data
14-15 V4 data

0

16-31 Read address for read response packets.
1 0-31 Register read data or audio input data, left in bits 31-16, right in bits 15-0.
2 unused
3 unused

PAGE 242 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

MISCELLANEOUS IO CONTROLLER

The miscellaneous IO controller is a Communication Bus interface that provides system access to the
interface logic for the following:

• 16 general-purpose pins which may be used for communicating with and configuring a variety of
external hardware. These pins may be individually configured as inputs or outputs, and can be used
as interrupt sources. Some of them may be assigned to special functions.

• The system timers which can generate three interrupts at programmable rates. Each of these
interrupts is available to all the MPEs.

• The setup registers for the ROM interface, and for the Communication Bus controller.

• The external controller device (joystick) interface registers.

• The PWM output control register.

• The power-on configuration bits.

Miscellaneous IO Communication Bus Protocol
The registers described below are programmed over the Communication Bus. The miscellaneous IO
controller has Communication Bus ID 69 (hex 45). The communication protocol is as follows for the
command packet:

Long word Description
0 0-15 register address

31 set for write, clear for read
1 0-31 write data if a write command
2 unused
3 unused

The response packet is returned if the operation was a read. Its format is:

Long word Description
0 0-1 read status

16-31 register address of an IO read
1 0-31 read data
2 unused
3 unused

The read status bits are used to indicate if the response packet is an IO read response, or controller data
sent automatically because the commSend bit is set, as follows:

Status Function
0 IO Read data
1 Controller 1 data
2 Controller 2 data

System Timers
The system timers provide three interrupt signals, which are available to all the MPEs. These timers may
be independently programmed for a variety of system functions.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 243

There are actually four timer-counters, one of which acts as a rate pre-scale counter for the other three.
Each timer consists of a holding register and a down counter. A write will change the value in the
holding register, but the value is not actually transferred to the counter until the next time it reaches zero.
A read returns the current contents of the down counter. Timers 0, 1 and 2 will count down by one
whenever the pre-scale counter contains zero.

The timers generate an interrupt pulse every time the count value reaches one. When the count values
reaches zero, the counter is reloaded from the holding register. This means that a value of zero disables
the counter.

timerPre System Timer Pre-Scale
$0000
Read / Write

This register defines a pre-scale value from the system clock which controls a pre-scale timer.
This is used to give the count rate of the main timers, which are described below. This allows the
timers to be programmed by applications without them being aware of the system clock speed.
Normally a pre-scale of 54 is set (for NUON), so that the timers count at 1 MHz, and will
continue to do so in future faster versions of the architecture,

The current value of the counter may be read, although this is primarily for debug purposes as it
counts so fast.

Bit Description
31-8 Reserved, write zeroes.
7-0 Timer pre-scale value. The system clock is divided by (1+n), where n is the value written to

these bits. Zero means that the timers count at the full clock rate.

timer0 System timer 0
$0001
Read / Write

This register defines the count rate of system timer 0, in units defined by the timer pre-scale
value above. Timer 0 is available to all the MPEs, and is used to provide interrupts, as required,
at a defined rate. All processors which have this interrupt enabled will be interrupted together.

The current value of the counter may be read.

Bit Description
31-20 Reserved, write zeroes.
19-0 Timer count value. This timer counts down at a rate defined by the pre-scale value, and will

generate loop at a rate given by the output of the pre-scale counter divided by (1+n), where n is
the value written to these bits. Zero will disable the timer.

timer1 System timer 1
$0002
Read / Write

This register defines the count rate of system timer 1, in units defined by the timer pre-scale
value above. Timer 1 is available to all the MPEs, and is used to provide interrupts, as required,
at a defined rate. All processors which have this interrupt enabled will be interrupted together.

The current value of the counter may be read.

PAGE 244 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Description
31-20 Reserved, write zeroes.
19-0 Timer count value. This timer counts down at a rate defined by the pre-scale value, and will

generate loop at a rate given by the output of the pre-scale counter divided by (1+n), where n is
the value written to these bits. Zero will disable the timer.

timer2 System timer 2
$0003
Read / Write

This register defines the count rate of system timer 2, in units defined by the timer pre-scale
value above. Timer 2 is available to all the MPEs, and is used to provide interrupts, as required,
at a defined rate. All processors which have this interrupt enabled will be interrupted together.

The current value of the counter may be read.

Bit Description
31-20 Reserved, write zeroes.
19-0 Timer count value. This timer counts down at a rate defined by the pre-scale value, and will

generate loop at a rate given by the output of the pre-scale counter divided by (1+n), where n is
the value written to these bits. Zero will disable the timer.

ROM Interface Control
The ROM interface itself is described in the ROM Bus section of this documentation

romCtrl ROM Interface Control
$0010
Read / Write

Bit Name Description
31 testerMode Sets the ROM interface in tester mode. This forces an idle state between

ROM accesses and is only required for diagnostic test mode. This
defaults to on.

30-28 romIdlePause ROM idle pause time. If this is non-zero, the tester mode function
below is overridden. The ROM interface will go idle for 2+n clock
cycles between each transfer, where n is the value written here. This is
necessary for ROMs that have a long tri-state disable time (most of
them).

27-5 unused Write zero.
4 oneByte Overrides the normal length of Other Bus transfers so that they may be

one byte long. When this bit is set Other Bus transfers should always
have length 1. One byte will be written or read from bits 31-24 of the
data. The address, as usual, can be on any byte boundary. This is useful
for programming flash memory.

0-3 cycleTim ROM cycle time in clock cycles. Must be in the range 1-15 as
appropriate for the speed of the external memory. See the ROM Bus
description.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 245

flashTiming ROM Interface Control
$0011
Read / Write

This register is available on Aries 3 and upwards only.
Bit Name Description
31 flashMode When set, the interface supports NAND flash memory, an 8-bit latched

interface as used by SmartMedia.
When clear the interface supports regular bus style flash memory, ROM
and static RAM.
The default state of this bit is also controlled by the configuration
resistor on X_vdata_1. This should be pulled high for set, low for clear.

30 sysBusMode When set, the interface is multiplexed onto System Bus pins. When
clear, it uses its own private bus.
The default state of this bit is also controlled by the configuration
resistor on X_vdata_3. This should be pulled high for set, low for clear.

29 readExtra16 When set, the “extra” 16 bytes in each 512-byte sector may be read.
Normal reads are not possible, and only the bottom 16 bytes of each
512-byte area are valid.
When clear reads occur normally.

28 readExtra16onA23 When set, the “extra” 16 bytes in each 512-byte sector may be read.
These appear on addresses where A23 is high, i.e. from $F0800000
upwards. This is only useful when the flash memory is 8 Mbytes or
smaller, where the memory itself ignores A23.
When clear reads occur normally.

27-26 unused Write zero.
25-20 flashTwb WE high to busy delay.
19-16 flashTwp Write pulse width.
15-12 flashTwh WE high hold time.
11-8 flashTrr Ready to RE falling edge.
7-4 flashTrp Read pulse width.
3-0 flashTrh Worst of RE high hold time, and RE high to output high impedance.

flashSpecTim ROM Interface Control
$0012
Read / Write

This register is available on Aries 3 and upwards only.
Bit Name Description
31-12 unused Write zero.
11-8 flashTsu Defines the setup time, in main (54 MHz) clock cycles, of a special

cycle. In this phase, CE is low, CLE and ALE are as programmed
below, and write data is set up if the data is enabled. RE and WE are
both 1 in this phase.

7-4 flashTsa Defines the strobe active time, in main (54 MHz) clock cycles, of a
special cycle. In this phase, RE goes low if specialRead is high,
otherwise WE goes low.

3-0 flashTsh Defines the hold time, in main (54 MHz) clock cycles, of a special
cycle. In this phase conditions are the same as the setup phase.

PAGE 246 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

flashSpecCtl ROM Interface Control
$0013
Read / Write

This register allows special cycles to be performed. These can be RE or WE strobed, reads or
writes, and CLE and ALE set. This allows pretty much anything to be performed by software.
Controlling software should make sure no reads or writes are active.

During a special cycle, CE goes low for the duration of the cycle. The cycle is divided into three
phases, with the timing controlled by the flashSpecTim register. These are setup, active, and
hold. RE, or WE, is strobed only during the active phase.

This register is available on Aries 3 and upwards only.
Bit Name Description
31 specialActive This is set to one to initiate a special cycle. It must be polled until it

returns to zero before performing either another special cycle or a
normal read or write operation.

30 specialCle Defines the polarity of the CLE signal during the special cycle.
29 specialAle Defines the polarity of the ALE signal during the special cycle.
28 specialRead Defines whether the cycle is a read, where RE is strobed, or a write,

where WE is strobed. Set for a read, clear for a write.
27 specialDataDir Defines the direction of the data bus during the special cycle. This

should be set to one for a read, and zero for a write, in which case
specialWData is enabled onto the data bus for the duration of the
cycle.

26 specialBusyWait Makes the special cycle hold off until BUSY is inactive (high). The
special cycle will not start its setup phase until BUSY goes high.

25 specialHold This signal should be set in order to hold CE low between special
cycles. Set this to one for all but the last cycle of a group that must
occur during one CE low time. If the flash is on the System Bus, then
the System Bus is held by the flash memory throughout this period.
Therefore the maximum time this may be set for must be limited to (??)
microseconds.

24-16 unused Write zero.
15-8 specialWData Write data for write cycles.
7-0 specialRData Read data for read cycles. This is captured at the end of the active phase

of the special cycle. It will not be valid for read until specialActive has
returned to zero.
This is read only (write zeroes).

General Purpose IO Pins
Aries 1 and 2 have 16 general-purpose IO pins, which can be individually configured as inputs or
outputs, and may also be used as interrupt sources (when configured as inputs).

Aries 3 adds an additional 20 GPIO pins, some of which overlay existing, but rarely used, functions.
Other pins are in unused ball positions. None of these are available when the 208-pin QFP package is
selected. GPIO pins 16-28 occupy BGA ball positions which are unused in Aries 1-2. GPIO pins 29-35
allow System Bus address lines 24-18 to be used for alternate functions in the BGA package.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 247

Many of the GPIO pins have special functions, used by modules outside the GPIO pin control logic. The
special control bits below switch them over to these special functions, which are:

GPIO First Special Function Second Special Function Third Special Function
0 System Bus interrupt output
1 Audio input high rate clock

output
Audio output I2S data line sdat[3]

2 Serial Peripheral Bus
interface SCL

3 Serial Peripheral Bus
interface SDA

4 Second audio input channel
data

5 Second audio input channel
bit clock

6 Second audio input channel
word flag

7 System Bus external mode
TSIZ(0)

SIO A clock

8 System Bus external mode
TSIZ(1)

SIO A request

9 System Bus A(25) SIO A transmit data
10 System Bus A(26) SIO A request/acknowledge Secondary Serial Peripheral Bus

interface SCL
11 System Bus A(27) SIO A receive data Secondary Serial Peripheral Bus

interface SDA
12 System Bus A(28) System Bus NAND flash busy.
13 System Bus A(29) PWM0
14 System Bus A(30) PWM1
15 System Bus A(31) UAE
16
17
18
19
20
21
22
23
24
25
26
27
28
29 System Bus A(18) SIO B clock
30 System Bus A(19) SIO B request
31 System Bus A(20) SIO B transmit data
32 System Bus A(21) SIO B request/acknowledge
33 System Bus A(22) SIO B receive data
34 System Bus A(23)
35 System Bus A(24)

PAGE 248 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

The control registers are:

gpioCtrl0 General Purpose IO Pin Control 0
$0020
Read / Write

This register controls GPIO pins 0-7 when they are operating normally (special functions
disabled). The outputs can also be controlled in an atomic manner by the gpioAt0 register
described below. This is useful if multiple processors want to control pins in this group.

Bit Name Description
30 gp7in When read, this gives the external state of the GPIO(7) pin.
29 gp7out When the GPIO(7) pin is an output, this is the data driven on to it.
28 gp7enable When set, the GPIO(7) pin is enabled as an output.
26 gp6in When read, this gives the external state of the GPIO(6) pin.
25 gp6out When the GPIO(6) pin is an output, this is the data driven on to it.
24 gp6enable When set, the GPIO(6) pin is enabled as an output.
22 gp5in When read, this gives the external state of the GPIO(5) pin.
21 gp5out When the GPIO(5) pin is an output, this is the data driven on to it.
20 gp5enable When set, the GPIO(5) pin is enabled as an output.
18 gp4in When read, this gives the external state of the GPIO(4) pin.
17 gp4out When the GPIO(4) pin is an output, this is the data driven on to it.
16 gp4enable When set, the GPIO(4) pin is enabled as an output.
14 gp3in When read, this gives the external state of the GPIO(3) pin.
13 gp3out When the GPIO(3) pin is an output, this is the data driven on to it.
12 gp3enable When set, the GPIO(3) pin is enabled as an output.
10 gp2in When read, this gives the external state of the GPIO(2) pin.
9 gp2out When the GPIO(2) pin is an output, this is the data driven on to it.
8 gp2enable When set, the GPIO(2) pin is enabled as an output.
6 gp1in When read, this gives the external state of the GPIO(1) pin.
5 gp1out When the GPIO(1) pin is an output, this is the data driven on to it.
4 gp1enable When set, the GPIO(1) pin is enabled as an output.
2 gp0in When read, this gives the external state of the GPIO(0) pin.
1 gp0out When the GPIO(0) pin is an output, this is the data driven on to it.
0 gp0enable When set, the GPIO(0) pin is enabled as an output.

gpioAt0 General Purpose IO Pin Atomic Control 0
$0028
Write Only

This register allows GPIO pins 0-7 to be controlled independently by multiple processes, by
allowing them to be modified atomically. If the bits corresponding to a particular GPIO pin are
all set to zero, it is not modified. If a bit is set, then it is used to either set or clear a GPIO control
bit.

For all bits, set has priority over clear, if both commands are given.

Bit Name Description
31 gp7Dset The GPIO(7) data output bit (gp7out) is set by this bit.
30 gp7Dclr The GPIO(7) data output bit (gp7out) is cleared by this bit.
29 gp7Eset The GPIO(7) output enable bit (gp7enable) is set by this bit.
28 gp7Eclr The GPIO(7) output enable bit (gp7enable) is cleared by this bit.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 249

Bit Name Description
27 gp6Dset The GPIO(6) data output bit (gp6out) is set by this bit.
26 gp6Dclr The GPIO(6) data output bit (gp6out) is cleared by this bit.
25 gp6Eset The GPIO(6) output enable bit (gp6enable) is set by this bit.
24 gp6Eclr The GPIO(6) output enable bit (gp6enable) is cleared by this bit.
23 gp5Dset The GPIO(5) data output bit (gp5out) is set by this bit.
22 gp5Dclr The GPIO(5) data output bit (gp5out) is cleared by this bit.
21 gp5Eset The GPIO(5) output enable bit (gp5enable) is set by this bit.
20 gp5Eclr The GPIO(5) output enable bit (gp5enable) is cleared by this bit.
19 gp4Dset The GPIO(4) data output bit (gp4out) is set by this bit.
18 gp4Dclr The GPIO(4) data output bit (gp4out) is cleared by this bit.
17 gp4Eset The GPIO(4) output enable bit (gp4enable) is set by this bit.
16 gp4Eclr The GPIO(4) output enable bit (gp4enable) is cleared by this bit.
15 gp3Dset The GPIO(3) data output bit (gp3out) is set by this bit.
14 gp3Dclr The GPIO(3) data output bit (gp3out) is cleared by this bit.
13 gp3Eset The GPIO(3) output enable bit (gp3enable) is set by this bit.
12 gp3Eclr The GPIO(3) output enable bit (gp3enable) is cleared by this bit.
11 gp2Dset The GPIO(2) data output bit (gp2out) is set by this bit.
10 gp2Dclr The GPIO(2) data output bit (gp2out) is cleared by this bit.
9 gp2Eset The GPIO(2) output enable bit (gp2enable) is set by this bit.
8 gp2Eclr The GPIO(2) output enable bit (gp2enable) is cleared by this bit.
7 gp1Dset The GPIO(1) data output bit (gp1out) is set by this bit.
6 gp1Dclr The GPIO(1) data output bit (gp1out) is cleared by this bit.
5 gp1Eset The GPIO(1) output enable bit (gp1enable) is set by this bit.
4 gp1Eclr The GPIO(1) output enable bit (gp1enable) is cleared by this bit.
3 gp0Dset The GPIO(0) data output bit (gp0out) is set by this bit.
2 gp0Dclr The GPIO(0) data output bit (gp0out) is cleared by this bit.
1 gp0Eset The GPIO(0) output enable bit (gp0enable) is set by this bit.
0 gp0Eclr The GPIO(0) output enable bit (gp0enable) is cleared by this bit.

gpioCtrl1 General Purpose IO Pin Control 1
$0021
Read / Write

This register controls GPIO pins 8-15 when they are operating normally (special functions
disabled). The outputs can also be controlled in an atomic manner by the gpioAt1 register
described below. This is useful if multiple processors want to control pins in this group.

Bit Name Description
30 gp15in When read, this gives the external state of the GPIO(15) pin.
29 gp15out When the GPIO(15) pin is an output, this is the data driven on to it.
28 gp15enable When set, the GPIO(15) pin is enabled as an output.
26 gp14in When read, this gives the external state of the GPIO(14) pin.
25 gp14out When the GPIO(14) pin is an output, this is the data driven on to it.
24 gp14enable When set, the GPIO(14) pin is enabled as an output.
22 gp13in When read, this gives the external state of the GPIO(13) pin.
21 gp13out When the GPIO(13) pin is an output, this is the data driven on to it.
20 gp13enable When set, the GPIO(13) pin is enabled as an output.
18 gp12in When read, this gives the external state of the GPIO(12) pin.
17 gp12out When the GPIO(12) pin is an output, this is the data driven on to it.
16 gp12enable When set, the GPIO(12) pin is enabled as an output.

PAGE 250 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Name Description
14 gp11in When read, this gives the external state of the GPIO(11) pin.
13 gp11out When the GPIO(11) pin is an output, this is the data driven on to it.
12 gp11enable When set, the GPIO(11) pin is enabled as an output.
10 gp10in When read, this gives the external state of the GPIO(10) pin.
9 gp10out When the GPIO(10) pin is an output, this is the data driven on to it.
8 gp10enable When set, the GPIO(10) pin is enabled as an output.
6 gp9in When read, this gives the external state of the GPIO(9) pin.
5 gp9out When the GPIO(9) pin is an output, this is the data driven on to it.
4 gp9enable When set, the GPIO(9) pin is enabled as an output.
2 gp8in When read, this gives the external state of the GPIO(8) pin.
1 gp8out When the GPIO(8) pin is an output, this is the data driven on to it.
0 gp8enable When set, the GPIO(8) pin is enabled as an output.

gpioAt1 General Purpose IO Pin Atomic Control 1
$0029
Write Only

This register allows GPIO pins 8-15 to be controlled independently by multiple processes, by
allowing them to be modified atomically. If the bits corresponding to a particular GPIO pin are
all set to zero, it is not modified. If a bit is set, then it is used to either set or clear a GPIO control
bit.

For all bits, set has priority over clear, if both commands are given.

Bit Name Description
31 gp15Dset The GPIO(15) data output bit (gp15out) is set by this bit.
30 gp15Dclr The GPIO(15) data output bit (gp15out) is cleared by this bit.
29 gp15Eset The GPIO(15) output enable bit (gp15enable) is set by this bit.
28 gp15Eclr The GPIO(15) output enable bit (gp15enable) is cleared by this bit.
27 gp14Dset The GPIO(14) data output bit (gp14out) is set by this bit.
26 gp14Dclr The GPIO(14) data output bit (gp14out) is cleared by this bit.
25 gp14Eset The GPIO(14) output enable bit (gp14enable) is set by this bit.
24 gp14Eclr The GPIO(14) output enable bit (gp14enable) is cleared by this bit.
23 gp13Dset The GPIO(13) data output bit (gp13out) is set by this bit.
22 gp13Dclr The GPIO(13) data output bit (gp13out) is cleared by this bit.
21 gp13Eset The GPIO(13) output enable bit (gp13enable) is set by this bit.
20 gp13Eclr The GPIO(13) output enable bit (gp13enable) is cleared by this bit.
19 gp12Dset The GPIO(12) data output bit (gp12out) is set by this bit.
18 gp12Dclr The GPIO(12) data output bit (gp12out) is cleared by this bit.
17 gp12Eset The GPIO(12) output enable bit (gp12enable) is set by this bit.
16 gp12Eclr The GPIO(12) output enable bit (gp12enable) is cleared by this bit.
15 gp11Dset The GPIO(11) data output bit (gp11out) is set by this bit.
14 gp11Dclr The GPIO(11) data output bit (gp11out) is cleared by this bit.
13 gp11Eset The GPIO(11) output enable bit (gp11enable) is set by this bit.
12 gp11Eclr The GPIO(11) output enable bit (gp11enable) is cleared by this bit.
11 gp10Dset The GPIO(10) data output bit (gp10out) is set by this bit.
10 gp10Dclr The GPIO(10) data output bit (gp10out) is cleared by this bit.
9 gp10Eset The GPIO(10) output enable bit (gp10enable) is set by this bit.
8 gp10Eclr The GPIO(10) output enable bit (gp10enable) is cleared by this bit.
7 gp9Dset The GPIO(9) data output bit (gp9out) is set by this bit.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 251

Bit Name Description
6 gp9Dclr The GPIO(9) data output bit (gp9out) is cleared by this bit.
5 gp9Eset The GPIO(9) output enable bit (gp9enable) is set by this bit.
4 gp9Eclr The GPIO(9) output enable bit (gp9enable) is cleared by this bit.
3 gp8Dset The GPIO(8) data output bit (gp8out) is set by this bit.
2 gp8Dclr The GPIO(8) data output bit (gp8out) is cleared by this bit.
1 gp8Eset The GPIO(8) output enable bit (gp8enable) is set by this bit.
0 gp8Eclr The GPIO(8) output enable bit (gp8enable) is cleared by this bit.

gpioCtrl2 General Purpose IO Pin Control 2
$002B
Read / Write

This register controls GPIO pins 16-23 when they are operating as GPIO pins. The outputs can
also be controlled in an atomic manner by the gpioAt2 register described below. This is useful if
multiple processors want to control pins in this group.

Bit Name Description
30 gp23in When read, this gives the external state of the GPIO(23) pin.
29 gp23out When the GPIO(23) pin is an output, this is the data driven on to it.
28 gp23enable When set, the GPIO(23) pin is enabled as an output.
26 gp22in When read, this gives the external state of the GPIO(22) pin.
25 gp22out When the GPIO(22) pin is an output, this is the data driven on to it.
24 gp22enable When set, the GPIO(22) pin is enabled as an output.
22 gp21in When read, this gives the external state of the GPIO(21) pin.
21 gp21out When the GPIO(21) pin is an output, this is the data driven on to it.
20 gp21enable When set, the GPIO(21) pin is enabled as an output.
18 gp20in When read, this gives the external state of the GPIO(20) pin.
17 gp20out When the GPIO(20) pin is an output, this is the data driven on to it.
16 gp20enable When set, the GPIO(20) pin is enabled as an output.
14 gp19in When read, this gives the external state of the GPIO(19) pin.
13 gp19out When the GPIO(19) pin is an output, this is the data driven on to it.
12 gp19enable When set, the GPIO(19) pin is enabled as an output.
10 gp18in When read, this gives the external state of the GPIO(18) pin.
9 gp18out When the GPIO(18) pin is an output, this is the data driven on to it.
8 gp18enable When set, the GPIO(18) pin is enabled as an output.
6 gp17in When read, this gives the external state of the GPIO(17) pin.
5 gp17out When the GPIO(17) pin is an output, this is the data driven on to it.
4 gp17enable When set, the GPIO(17) pin is enabled as an output.
2 gp16in When read, this gives the external state of the GPIO(16) pin.
1 gp16out When the GPIO(16) pin is an output, this is the data driven on to it.
0 gp16enable When set, the GPIO(16) pin is enabled as an output.

gpioAt2 General Purpose IO Pin Atomic Control 2
$002E
Write Only

This register allows GPIO pins 16-23 to be controlled independently by multiple processes, by
allowing them to be modified atomically. If the bits corresponding to a particular GPIO pin are
all set to zero, it is not modified. If a bit is set, then it is used to either set or clear a GPIO control
bit.

PAGE 252 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

For all bits, set has priority over clear, if both commands are given.

Bit Name Description
31 gp23Dset The GPIO(23) data output bit (gp23out) is set by this bit.
30 gp23Dclr The GPIO(23) data output bit (gp23out) is cleared by this bit.
29 gp23Eset The GPIO(23) output enable bit (gp23enable) is set by this bit.
28 gp23Eclr The GPIO(23) output enable bit (gp23enable) is cleared by this bit.
27 gp22Dset The GPIO(22) data output bit (gp22out) is set by this bit.
26 gp22Dclr The GPIO(22) data output bit (gp22out) is cleared by this bit.
25 gp22Eset The GPIO(22) output enable bit (gp22enable) is set by this bit.
24 gp22Eclr The GPIO(22) output enable bit (gp22enable) is cleared by this bit.
23 gp21Dset The GPIO(21) data output bit (gp21out) is set by this bit.
22 gp21Dclr The GPIO(21) data output bit (gp21out) is cleared by this bit.
21 gp21Eset The GPIO(21) output enable bit (gp21enable) is set by this bit.
20 gp21Eclr The GPIO(21) output enable bit (gp21enable) is cleared by this bit.
19 gp20Dset The GPIO(20) data output bit (gp20out) is set by this bit.
18 gp20Dclr The GPIO(20) data output bit (gp20out) is cleared by this bit.
17 gp20Eset The GPIO(20) output enable bit (gp20enable) is set by this bit.
16 gp20Eclr The GPIO(20) output enable bit (gp20enable) is cleared by this bit.
15 gp19Dset The GPIO(19) data output bit (gp19out) is set by this bit.
14 gp19Dclr The GPIO(19) data output bit (gp19out) is cleared by this bit.
13 gp19Eset The GPIO(19) output enable bit (gp19enable) is set by this bit.
12 gp19Eclr The GPIO(19) output enable bit (gp19enable) is cleared by this bit.
11 gp18Dset The GPIO(18) data output bit (gp18out) is set by this bit.
10 gp18Dclr The GPIO(18) data output bit (gp18out) is cleared by this bit.
9 gp18Eset The GPIO(18) output enable bit (gp18enable) is set by this bit.
8 gp18Eclr The GPIO(18) output enable bit (gp18enable) is cleared by this bit.
7 gp17Dset The GPIO(17) data output bit (gp17out) is set by this bit.
6 gp17Dclr The GPIO(17) data output bit (gp17out) is cleared by this bit.
5 gp17Eset The GPIO(17) output enable bit (gp17enable) is set by this bit.
4 gp17Eclr The GPIO(17) output enable bit (gp17enable) is cleared by this bit.
3 gp16Dset The GPIO(16) data output bit (gp16out) is set by this bit.
2 gp16Dclr The GPIO(16) data output bit (gp16out) is cleared by this bit.
1 gp16Eset The GPIO(16) output enable bit (gp16enable) is set by this bit.
0 gp16Eclr The GPIO(16) output enable bit (gp16enable) is cleared by this bit.

gpioCtrl3 General Purpose IO Pin Control 3
$002C
Read / Write

This register controls GPIO pins 24-31 when they are operating as GPIO pins. The outputs can
also be controlled in an atomic manner by the gpioAt3 register described below. This is useful if
multiple processors want to control pins in this group.

Bit Name Description
30 gp31in When read, this gives the external state of the GPIO(31) pin.
29 gp31out When the GPIO(31) pin is an output, this is the data driven on to it.
28 gp31enable When set, the GPIO(31) pin is enabled as an output.
26 gp30in When read, this gives the external state of the GPIO(30) pin.
25 gp30out When the GPIO(30) pin is an output, this is the data driven on to it.
24 gp30enable When set, the GPIO(30) pin is enabled as an output.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 253

Bit Name Description
22 gp29in When read, this gives the external state of the GPIO(29) pin.
21 gp29out When the GPIO(29) pin is an output, this is the data driven on to it.
20 gp29enable When set, the GPIO(29) pin is enabled as an output.
18 gp28in When read, this gives the external state of the GPIO(28) pin.
17 gp28out When the GPIO(28) pin is an output, this is the data driven on to it.
16 gp28enable When set, the GPIO(28) pin is enabled as an output.
14 gp27in When read, this gives the external state of the GPIO(27) pin.
13 gp27out When the GPIO(27) pin is an output, this is the data driven on to it.
12 gp27enable When set, the GPIO(27) pin is enabled as an output.
10 gp26in When read, this gives the external state of the GPIO(26) pin.
9 gp26out When the GPIO(26) pin is an output, this is the data driven on to it.
8 gp26enable When set, the GPIO(26) pin is enabled as an output.
6 gp25in When read, this gives the external state of the GPIO(25) pin.
5 gp25out When the GPIO(25) pin is an output, this is the data driven on to it.
4 gp25enable When set, the GPIO(25) pin is enabled as an output.
2 gp24in When read, this gives the external state of the GPIO(24) pin.
1 gp24out When the GPIO(24) pin is an output, this is the data driven on to it.
0 gp24enable When set, the GPIO(24) pin is enabled as an output.

gpioAt3 General Purpose IO Pin Atomic Control 3
$002F
Write Only

This register allows GPIO pins 24-31 to be controlled independently by multiple processes, by
allowing them to be modified atomically. If the bits corresponding to a particular GPIO pin are
all set to zero, it is not modified. If a bit is set, then it is used to either set or clear a GPIO control
bit.

For all bits, set has priority over clear, if both commands are given.

Bit Name Description
31 gp31Dset The GPIO(31) data output bit (gp31out) is set by this bit.
30 gp31Dclr The GPIO(31) data output bit (gp31out) is cleared by this bit.
29 gp31Eset The GPIO(31) output enable bit (gp31enable) is set by this bit.
28 gp31Eclr The GPIO(31) output enable bit (gp31enable) is cleared by this bit.
27 gp30Dset The GPIO(30) data output bit (gp30out) is set by this bit.
26 gp30Dclr The GPIO(30) data output bit (gp30out) is cleared by this bit.
25 gp30Eset The GPIO(30) output enable bit (gp30enable) is set by this bit.
24 gp30Eclr The GPIO(30) output enable bit (gp30enable) is cleared by this bit.
23 gp29Dset The GPIO(29) data output bit (gp29out) is set by this bit.
22 gp29Dclr The GPIO(29) data output bit (gp29out) is cleared by this bit.
21 gp29Eset The GPIO(29) output enable bit (gp29enable) is set by this bit.
20 gp29Eclr The GPIO(29) output enable bit (gp29enable) is cleared by this bit.
19 gp28Dset The GPIO(28) data output bit (gp28out) is set by this bit.
18 gp28Dclr The GPIO(28) data output bit (gp28out) is cleared by this bit.
17 gp28Eset The GPIO(28) output enable bit (gp28enable) is set by this bit.
16 gp28Eclr The GPIO(28) output enable bit (gp28enable) is cleared by this bit.
15 gp27Dset The GPIO(27) data output bit (gp27out) is set by this bit.
14 gp27Dclr The GPIO(27) data output bit (gp27out) is cleared by this bit.
13 gp27Eset The GPIO(27) output enable bit (gp27enable) is set by this bit.

PAGE 254 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Name Description
12 gp27Eclr The GPIO(27) output enable bit (gp27enable) is cleared by this bit.
11 gp26Dset The GPIO(26) data output bit (gp26out) is set by this bit.
10 gp26Dclr The GPIO(26) data output bit (gp26out) is cleared by this bit.
9 gp26Eset The GPIO(26) output enable bit (gp26enable) is set by this bit.
8 gp26Eclr The GPIO(26) output enable bit (gp26enable) is cleared by this bit.
7 gp25Dset The GPIO(25) data output bit (gp25out) is set by this bit.
6 gp25Dclr The GPIO(25) data output bit (gp25out) is cleared by this bit.
5 gp25Eset The GPIO(25) output enable bit (gp25enable) is set by this bit.
4 gp25Eclr The GPIO(25) output enable bit (gp25enable) is cleared by this bit.
3 gp24Dset The GPIO(24) data output bit (gp24out) is set by this bit.
2 gp24Dclr The GPIO(24) data output bit (gp24out) is cleared by this bit.
1 gp24Eset The GPIO(24) output enable bit (gp24enable) is set by this bit.
0 gp24Eclr The GPIO(24) output enable bit (gp24enable) is cleared by this bit.

gpioCtrl4 General Purpose IO Pin Control 4
$0038
Read / Write

This register controls GPIO pins 32-39 when they are operating as GPIO pins. The outputs can
also be controlled in an atomic manner by the gpioAt4 register described below. This is useful if
multiple processors want to control pins in this group.

Bit Name Description
30 gp39in When read, this gives the external state of the GPIO(39) pin.
29 gp39out When the GPIO(39) pin is an output, this is the data driven on to it.
28 gp39enable When set, the GPIO(39) pin is enabled as an output.
26 gp38in When read, this gives the external state of the GPIO(38) pin.
25 gp38out When the GPIO(38) pin is an output, this is the data driven on to it.
24 gp38enable When set, the GPIO(38) pin is enabled as an output.
22 gp37in When read, this gives the external state of the GPIO(37) pin.
21 gp37out When the GPIO(37) pin is an output, this is the data driven on to it.
20 gp37enable When set, the GPIO(37) pin is enabled as an output.
18 gp36in When read, this gives the external state of the GPIO(36) pin.
17 gp36out When the GPIO(36) pin is an output, this is the data driven on to it.
16 gp36enable When set, the GPIO(36) pin is enabled as an output.
14 gp35in When read, this gives the external state of the GPIO(35) pin.
13 gp35out When the GPIO(35) pin is an output, this is the data driven on to it.
12 gp35enable When set, the GPIO(35) pin is enabled as an output.
10 gp34in When read, this gives the external state of the GPIO(34) pin.
9 gp34out When the GPIO(34) pin is an output, this is the data driven on to it.
8 gp34enable When set, the GPIO(34) pin is enabled as an output.
6 gp33in When read, this gives the external state of the GPIO(33) pin.
5 gp33out When the GPIO(33) pin is an output, this is the data driven on to it.
4 gp33enable When set, the GPIO(33) pin is enabled as an output.
2 gp32in When read, this gives the external state of the GPIO(32) pin.
1 gp32out When the GPIO(32) pin is an output, this is the data driven on to it.
0 gp32enable When set, the GPIO(32) pin is enabled as an output.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 255

gpioAt4 General Purpose IO Pin Atomic Control 4
$0039
Write Only

This register allows GPIO pins 32-39 to be controlled independently by multiple processes, by
allowing them to be modified atomically. If the bits corresponding to a particular GPIO pin are
all set to zero, it is not modified. If a bit is set, then it is used to either set or clear a GPIO control
bit.

For all bits, set has priority over clear, if both commands are given.

Bit Name Description
31 gp39Dset The GPIO(39) data output bit (gp39out) is set by this bit.
30 gp39Dclr The GPIO(39) data output bit (gp39out) is cleared by this bit.
29 gp39Eset The GPIO(39) output enable bit (gp39enable) is set by this bit.
28 gp39Eclr The GPIO(39) output enable bit (gp39enable) is cleared by this bit.
27 gp38Dset The GPIO(38) data output bit (gp38out) is set by this bit.
26 gp38Dclr The GPIO(38) data output bit (gp38out) is cleared by this bit.
25 gp38Eset The GPIO(38) output enable bit (gp38enable) is set by this bit.
24 gp38Eclr The GPIO(38) output enable bit (gp38enable) is cleared by this bit.
23 gp37Dset The GPIO(37) data output bit (gp37out) is set by this bit.
22 gp37Dclr The GPIO(37) data output bit (gp37out) is cleared by this bit.
21 gp37Eset The GPIO(37) output enable bit (gp37enable) is set by this bit.
20 gp37Eclr The GPIO(37) output enable bit (gp37enable) is cleared by this bit.
19 gp36Dset The GPIO(36) data output bit (gp36out) is set by this bit.
18 gp36Dclr The GPIO(36) data output bit (gp36out) is cleared by this bit.
17 gp36Eset The GPIO(36) output enable bit (gp36enable) is set by this bit.
16 gp36Eclr The GPIO(36) output enable bit (gp36enable) is cleared by this bit.
15 gp35Dset The GPIO(35) data output bit (gp35out) is set by this bit.
14 gp35Dclr The GPIO(35) data output bit (gp35out) is cleared by this bit.
13 gp35Eset The GPIO(35) output enable bit (gp35enable) is set by this bit.
12 gp35Eclr The GPIO(35) output enable bit (gp35enable) is cleared by this bit.
11 gp34Dset The GPIO(34) data output bit (gp34out) is set by this bit.
10 gp34Dclr The GPIO(34) data output bit (gp34out) is cleared by this bit.
9 gp34Eset The GPIO(34) output enable bit (gp34enable) is set by this bit.
8 gp34Eclr The GPIO(34) output enable bit (gp34enable) is cleared by this bit.
7 gp33Dset The GPIO(33) data output bit (gp33out) is set by this bit.
6 gp33Dclr The GPIO(33) data output bit (gp33out) is cleared by this bit.
5 gp33Eset The GPIO(33) output enable bit (gp33enable) is set by this bit.
4 gp33Eclr The GPIO(33) output enable bit (gp33enable) is cleared by this bit.
3 gp32Dset The GPIO(32) data output bit (gp32out) is set by this bit.
2 gp32Dclr The GPIO(32) data output bit (gp32out) is cleared by this bit.
1 gp32Eset The GPIO(32) output enable bit (gp32enable) is set by this bit.
0 gp32Eclr The GPIO(32) output enable bit (gp32enable) is cleared by this bit.

gpioSpec General Purpose IO Pin Special Function Control 1
$0023
Read / Write

This register re-assigns GPIO pins to special functions, as follow:

PAGE 256 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Name Description
31 gp15spec When set, the GPIO(15) function is overridden, and this pin becomes the

function selected by gp15mode.
30 gp15mode When gp15spec is set, then if this bit is set the GPIO(15) pin becomes UAE, if

clear it is SYSA(31)
29 gp14spec When set, the GPIO(14) function is overridden, and this pin becomes the

function selected by gp14mode.
28 gp13spec When set, the GPIO(13) function is overridden, and this pin becomes the

function selected by gp13mode.
27 gp12spec When set, the GPIO(12) function is overridden, and this pin becomes

SYSA(28). This bit is ignored if gp12isBusy is set.
26 gp11spec When set, the GPIO(11) function is overridden, and this pin becomes

SYSA(27). This bit is ignored if gp7to11sio or gp11mode is set.
25 gp10spec When set, the GPIO(10) function is overridden, and this pin becomes

SYSA(26). This bit is ignored if gp7to11sio or gp10mode is set.
24 gp9spec When set, the GPIO(9) function is overridden, and this pin becomes

SYSA(25). This bit is ignored if gp7to11sio is set.
23 gp8spec When set, the GPIO(8) function is overridden, and this pin becomes TSIZ(1).

This bit is ignored if gp7to11sio is set.
22 gp7spec When set, the GPIO(7) function is overridden, and this pin becomes TSIZ(0).

This bit is ignored if gp7to11sio is set.
21 gp14mode When gp14spec is set, then if this bit is set the GPIO(14) pin becomes

PWM(1), if clear it is SYSA(30)
20 gp13mode When gp13spec is set, then if this bit is set the GPIO(13) pin becomes

PWM(0), if clear it is SYSA(29)
19 gp7to11sio When gp7to11sio is set, GPIO pins 7 to 11 become SIO channel A. This will

over-ride all other settings for these bits: gp11spec, gp10spec, gp9spec,
gp8spec, gp7spec, gp11mode and gp10mode.
This function is available on Aries 3 and later versions only.

18-11 unused Write zeroes.
10 gp12isBusy When this bit is set GPIO(12) is used as the BUSY input for NAND flash

attached to the System Bus. This over-rides gp12spec.
This function is available on Aries 3 and later versions only.

9 gp1isSdat3 When gp1isSdat3 is set, along with gp1spec, GPIO(1) becomes the fourth I2S
serial audio data channel, SDAT[3].
This function is available on Aries 3 and later versions only.

8 gp11mode When set, the GPIO(11) function is overridden, and this pin becomes the
secondary Serial Peripheral Bus data pin. This over-rides gp11spec. This bit is
ignored if gp7to11sio is set.
This function is available on Aries 2 and later versions only.

7 gp10mode When set, the GPIO(10) function is overridden, and this pin becomes the
secondary Serial Peripheral Bus clock pin. This over-rides gp10spec. This bit
is ignored if gp7to11sio is set.
This function is available on Aries 2 and later versions only.

6 gp6spec When set, the GPIO(6) function is overridden, and this pin becomes the audio
input channel 2 word flag.

5 gp5spec When set, the GPIO(5) function is overridden, and this pin becomes the audio
input channel 2 bit clock.

4 gp4spec When set, the GPIO(4) function is overridden, and this pin becomes the audio
input channel 2 data.

3 gp3spec When set, the GPIO(3) function is overridden, and this pin becomes the Serial
Peripheral Bus data pin.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 257

Bit Name Description
2 gp2spec When set, the GPIO(2) function is overridden, and this pin becomes the Serial

Peripheral Bus clock pin.
1 gp1spec When set, the GPIO(1) function is overridden, and this pin becomes the audio

input high rate clock output.
0 gp0spec When set, the GPIO(0) function is overridden, and this pin becomes the

external host processor interrupt output.

gpioSpec2 General Purpose IO Pin Special Function Control 2
$002D
Read / Write

This register re-assigns GPIO pins to special functions, as follows. This register is available on
Aries 3 and later versions only.
Bit Name Description
31 gp35spec When set, the SYSA[24] function is overridden, and this pin becomes

GPIO[35].
30 gp34spec When set, the SYSA[23] function is overridden, and this pin becomes

GPIO[34].
29 gp33spec When set, the SYSA[22] function is overridden, and this pin becomes

GPIO[33]. This bit is ignored if gp29to33sio is set.
28 gp32spec When set, the SYSA[21] function is overridden, and this pin becomes

GPIO[32]. This bit is ignored if gp29to33sio is set.
27 gp31spec When set, the SYSA[20] function is overridden, and this pin becomes

GPIO[31]. This bit is ignored if gp29to33sio is set.
26 gp30spec When set, the SYSA[19] function is overridden, and this pin becomes

GPIO[30]. This bit is ignored if gp29to33sio is set.
25 gp29spec When set, the SYSA[18] function is overridden, and this pin becomes

GPIO[29]. This bit is ignored if gp29to33sio is set.
24 gp29to33sio When gp29to33sio is set, GPIO pins 29 to 33 become SIO channel B. This

will over-ride all other settings for these bits: gp33spec, gp32spec, gp31spec,
gp30mode and gp29mode.

23-0 unused Reserved, set to zero.

gpioInt1 General Purpose IO Pin Interrupt Control
$0024
Read / Write

These two registers control the GPIO interrupt. Any of GPIO 0-15 pins may be designated as an
interrupt source. Interrupts can be independently generated by a low level or falling edge, or by a
high level or rising edge.

Each GPIO pin has the following control bits:

• an enable, which allows that pin to generate interrupts

• a polarity flag which indicates that the interrupts are either active high (rising edge) or active
low (falling edge)

• an edge flag which makes them edge sensitive instead of level sensitive

PAGE 258 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

• an interrupt flag that indicates that the corresponding GPIO pin was the source of the
interrupt. If you write a one to the interrupt latch it clears, so that it is ready to accept another
interrupt condition.

Note that you should not perform the clear operation until the external interrupt source has been
cleared if the interrupt is level sensitive.

Note also that when performing a read modify write operation on this register you should service
all the interrupt sources, because reading then writing back a set interrupt latch will clear it.

Bit Name Description
31 gp15iena Enables interrupts from the GPIO(15) pin
30 gp15pol When clear, the interrupt from GPIO(15) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
29 gp15edge When set, the interrupt from GPIO(15) is edge sensitive, when clear it is level

sensitive.
28 gp15int Reading a one on this bit indicates that the source of the interrupt was

GPIO(15). Writing back a one clears the interrupt, writing a zero has no effect.
27 gp14iena Enables interrupts from the GPIO(14) pin
26 gp14pol When clear, the interrupt from GPIO(14) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
25 gp14edge When set, the interrupt from GPIO(14) is edge sensitive, when clear it is level

sensitive.
24 gp14int Reading a one on this bit indicates that the source of the interrupt was

GPIO(14). Writing back a one clears the interrupt, writing a zero has no effect.
23 gp13iena Enables interrupts from the GPIO(13) pin
22 gp13pol When clear, the interrupt from GPIO(13) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
21 gp13edge When set, the interrupt from GPIO(13) is edge sensitive, when clear it is level

sensitive.
20 gp13int Reading a one on this bit indicates that the source of the interrupt was

GPIO(13). Writing back a one clears the interrupt, writing a zero has no effect.
19 gp12iena Enables interrupts from the GPIO(12) pin
18 gp12pol When clear, the interrupt from GPIO(12) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
17 gp12edge When set, the interrupt from GPIO(12) is edge sensitive, when clear it is level

sensitive.
16 gp12int Reading a one on this bit indicates that the source of the interrupt was

GPIO(12). Writing back a one clears the interrupt, writing a zero has no effect.
15 gp11iena Enables interrupts from the GPIO(11) pin
14 gp11pol When clear, the interrupt from GPIO(11) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
13 gp11edge When set, the interrupt from GPIO(11) is edge sensitive, when clear it is level

sensitive.
12 gp11int Reading a one on this bit indicates that the source of the interrupt was

GPIO(11). Writing back a one clears the interrupt, writing a zero has no effect.
11 gp10iena Enables interrupts from the GPIO(10) pin
10 gp10pol When clear, the interrupt from GPIO(10) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
9 gp10edge When set, the interrupt from GPIO(10) is edge sensitive, when clear it is level

sensitive.
8 gp10int Reading a one on this bit indicates that the source of the interrupt was

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 259

Bit Name Description
GPIO(10). Writing back a one clears the interrupt, writing a zero has no effect.

7 gp9iena Enables interrupts from the GPIO(9) pin
6 gp9pol When clear, the interrupt from GPIO(9) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
5 gp9edge When set, the interrupt from GPIO(9) is edge sensitive, when clear it is level

sensitive.
4 gp9int Reading a one on this bit indicates that the source of the interrupt was

GPIO(9). Writing back a one clears the interrupt, writing a zero has no effect.
3 gp8iena Enables interrupts from the GPIO(8) pin
2 gp8pol When clear, the interrupt from GPIO(8) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
1 gp8edge When set, the interrupt from GPIO(8) is edge sensitive, when clear it is level

sensitive.
0 gp8int Reading a one on this bit indicates that the source of the interrupt was

GPIO(15). Writing back a one clears the interrupt, writing a zero has no effect.

gpioInt2 General Purpose IO Pin Interrupt control
$0025
Read / Write

See above for a description of this register.

Bit Name Description
31 gp7iena Enables interrupts from the GPIO(7) pin
30 gp7pol When clear, the interrupt from GPIO(7) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
29 gp7edge When set, the interrupt from GPIO(7) is edge sensitive, when clear it is level

sensitive.
28 gp7int Reading a one on this bit indicates that the source of the interrupt was

GPIO(7). Writing back a one clears the interrupt, writing a zero has no effect.
27 gp6iena Enables interrupts from the GPIO(6) pin
26 gp6pol When clear, the interrupt from GPIO(6) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
25 gp6edge When set, the interrupt from GPIO(6) is edge sensitive, when clear it is level

sensitive.
24 gp6int Reading a one on this bit indicates that the source of the interrupt was

GPIO(6). Writing back a one clears the interrupt, writing a zero has no effect.
23 gp5iena Enables interrupts from the GPIO(5) pin
22 gp5pol When clear, the interrupt from GPIO(5) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
21 gp5edge When set, the interrupt from GPIO(5) is edge sensitive, when clear it is level

sensitive.
20 gp5int Reading a one on this bit indicates that the source of the interrupt was

GPIO(5). Writing back a one clears the interrupt, writing a zero has no effect.
19 gp4iena Enables interrupts from the GPIO(4) pin
18 gp4pol When clear, the interrupt from GPIO(4) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
17 gp4edge When set, the interrupt from GPIO(4) is edge sensitive, when clear it is level

sensitive.
16 gp4int Reading a one on this bit indicates that the source of the interrupt was

GPIO(4). Writing back a one clears the interrupt, writing a zero has no effect.

PAGE 260 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Name Description
15 gp3iena Enables interrupts from the GPIO(3) pin
14 gp3pol When clear, the interrupt from GPIO(3) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
13 gp3edge When set, the interrupt from GPIO(3) is edge sensitive, when clear it is level

sensitive.
12 gp3int Reading a one on this bit indicates that the source of the interrupt was

GPIO(3). Writing back a one clears the interrupt, writing a zero has no effect.
11 gp2iena Enables interrupts from the GPIO(2) pin
10 gp2pol When clear, the interrupt from GPIO(2) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
9 gp2edge When set, the interrupt from GPIO(2) is edge sensitive, when clear it is level

sensitive.
8 gp2int Reading a one on this bit indicates that the source of the interrupt was

GPIO(2). Writing back a one clears the interrupt, writing a zero has no effect.
7 gp1iena Enables interrupts from the GPIO(1) pin
6 gp1pol When clear, the interrupt from GPIO(1) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
5 gp1edge When set, the interrupt from GPIO(1) is edge sensitive, when clear it is level

sensitive.
4 gp1int Reading a one on this bit indicates that the source of the interrupt was

GPIO(1). Writing back a one clears the interrupt, writing a zero has no effect.
3 gp0iena Enables interrupts from the GPIO(0) pin
2 gp0pol When clear, the interrupt from GPIO(0) is triggered by a rising edge or high

level; when set it is triggered by a falling edge or low level.
1 gp0edge When set, the interrupt from GPIO(0) is edge sensitive, when clear it is level

sensitive.
0 gp0int Reading a one on this bit indicates that the source of the interrupt was

GPIO(0). Writing back a one clears the interrupt, writing a zero has no effect.

gpioVin General Purpose Inputs from the Video Input Pins
$002A
Read Only

This location allows the video-input port to be used instead as a set of general-purpose inputs. Its
sole function is to allow the state of those inputs to be read.

Bit Name Description
31-24 vid The video input data bus pins.
23 viclk The video input clock pin.

System Bus Control
The System Bus interface itself is described in the System Bus section of this documentation

sysCtrl System Bus Control
$0030
Read / Write

Refer to the System Bus section of this document for details.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 261

sysMemctl System Bus Memory Control
$0031
Read / Write

Refer to the System Bus section of this document for details.

sysSdramCtrl System Bus SDRAM Control
$0032
Read / Write

Refer to the System Bus section of this document for details.

PWM Output Control
Two Pulse Width Modulated (PWM) outputs may be independently enabled on GPIO pins 13 and 14, if
required. These registers control that functionality. There are two independent PWM output channels,
which behave like each other.

pwm0 PWM Channel 0 Control
$0040
Read / Write

This register allows the low and high time to be separately programmed. This allows both the
duty cycle and the frequency to be controlled.

To set the output to be fixed high, you should set zero in the low time and a non-zero in the high
time. To set the output to be fixed low, then the high time should be zero, and the low time non-
zero. If both values are set to zero, then the output will stay at its previous value.

Bit Description
31-27 Reserved, write zero
16-16 Output high time in 54 MHz clock cycles. The value written here should be one less than the

desired high period.
15-11 Reserved, write zero
10-0 Output low time in 54 MHz clock cycles. The value written here should be one less than the

desired low period.

pwm1 PWM Channel 1 Control
$0041
Read / Write

This register allows the low and high time to be separately programmed. This allows both the
duty cycle and the frequency to be controlled.

To set the output to be fixed high, you should set zero in the low time and a non-zero in the high
time. To set the output to be fixed low, then the high time should be zero, and the low time non-
zero. If both values are set to zero, then the output will stay at its previous value.

Bit Description
31-27 Reserved, write zero
16-16 Output high time in 54 MHz clock cycles. The value written here should be one less than the

PAGE 262 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

desired high period.
15-11 Reserved, write zero
10-0 Output low time in 54 MHz clock cycles. The value written here should be one less than the

desired low period.

Power On Configuration

config Power On Configuration
$0060
Read Only

Reflects the eight power-on configuration bits.

Bit Description
31-8 Reserved, ignore
7-0 Power on configuration bits.

Communication Bus Configuration

commMpe0 MPE0 Communication Bus Address
$0100
Write Only

Communication Bus address for MPE0, the valid range is 0-63 and all the MPEs must be unique.
At reset, this defaults to zero.

Bit Description
31-6 Reserved, write zero
5-0 Communication Bus address of MPE0

commMpe1 MPE1 Communication Bus Address
$0101
Write Only

Communication Bus address for MPE1, the valid range is 0-63 and all the MPEs must be unique.
At reset, this defaults to one.

Bit Description
31-6 Reserved, write zero
5-0 Communication Bus address of MPE1

commMpe2 MPE2 Communication Bus Address
$0102
Write Only

Communication Bus address for MPE2, the valid range is 0-63 and all the MPEs must be unique.
At reset, this defaults to two.

Bit Description
31-6 Reserved, write zero
5-0 Communication Bus address of MPE2

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 263

commMpe3 MPE3 Communication Bus Address
$0103
Write Only

Communication Bus address for MPE3, the valid range is 0-63 and all the MPEs must be unique.
At reset, this defaults to three.

Bit Description
31-6 Reserved, write zero
5-0 Communication Bus address of MPE3

commMpe4-31 MPE4-31 Communication Bus Addresses
$0104 - $011F
Write Only

Reserved for MPEs 4-31. One day life will be this good.

ctrlXXX Controller Interface registers
$0200 - $02FF
Write Only

See the controller interface section below.

PAGE 264 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

CONTROLLER INTERFACE

Controllers are devices for user interaction with NUON. The controller interface can support a range of
these, and will also support storage devices such as game-save and high-score memory cards, and
communications devices. Possible ‘controller’ devices on these ports are:
• Game-pad controllers
• Joysticks
• Keyboards
• Mice
• Memory cards
• 3D Glasses (e.g. LCD shutters)
• Modems
• Simple network interfaces

The controller interface itself is a four-pin connector. These pins include power, ground, clock output,
and bi-directional data. The protocol over this interface is a synchronous serial bit-stream. The NUON
system is the master device that generates the clock and issues commands to individual slave devices,
which may then respond. The data transfer rate over this interface is programmable to match the
electrical capabilities of the external hardware.

The NUON system has two such ports, and a number of devices may be connected in parallel on each of
them.

Controller

NUON Based Device Controller
NUON

Interface
Controller

Interface
Controller

CGND

DA

CLK

CPWR

CGND

DB

CLK

CPWR

Protocol
The interface transmits thirty-four bit bursts of data, and expects responses on up to thirty-four bits. The
first bit is always set to one, and acts as a start bit to signal the framing of the following bits. The second
bit of transmitted data is intended to signal command or data, and the remaining thirty-two bits are
programmable.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 265

All receive data packets contain a payload of up to thirty-two data bits, and like transmit packets are
preceded by a start bit and a status bit. If the status bit is set, that is intended to indicate that the response
is null, and this may be used by the controller interface to signal that it is unable to respond to a
command.

data01

data11

zeroes

data01

11response packets can
be valid data or null

receive data

clock

transmit data
transmit packet can be
command or data

Figure 8 – Controller Packet Formats

Note that transmitted data changes on the falling edge of clock and should be sampled on the rising
edge, because otherwise clock and data can race. The rising edge of receive data is used to recognize the
framing of receive data, which is synchronous to the transmit clock but has no defined phase
relationship with it.

Because the tri-state enable is shared between port 1 and port 2, port 2 is slaved to port 1. This means
that data is transmitted on both ports whenever a command or data word is sent on port 1. Therefore,
whenever you want to transmit on either port, you should always set up port 2 to transmit, then set up
port 1. This implies that you may sometimes have to send some form of null data on one of the ports.

Controller Interface Control Registers
The controller interface registers are part of the miscellaneous IO controller module, which is
programmed over the Communication Bus. This interface will normally receive Communication Bus
packets at any time, unless it is waiting to transmit a response packet to a read command. The controller
interface can also send unsolicited packets if the appropriate enable bits are set. See the control and
status register descriptions below.

Long word 0 of a Communication Bus packet from the miscellaneous IO controller module normally
contains zero. However, if the packet is received data from a controller interface being automatically
forwarded, long word 0 contains the controller number. Long word 1, as usual, will contain the read
data.

Sending it to one of the controller command registers, along any associated data transmits a command.

If electrical interference is generated it may corrupt a data transfer in progress, so any data that is
sensitive to errors should be protected with a parity flag or a better error detection method. Allowing the
interface to go idle for thirty-four cycles will recover from a framing error. If this does not recover an
erroneous condition, the reset sequence may have to be performed.

Controller interface registers are in the general IO section described below. The control registers are:

ctrlCmd1 Send a Command on Controller Port 1
$0200
Write only

Writing to this register sends a command long word to controller port 1. This also causes a
transmit on port 2.

PAGE 266 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Description
31-0 Controller command.

ctrlSData1 Send Data on Controller Port 1

$0201
Write only

Writing to this register sends a data long word to controller port 1. This also causes a transmit on
port 2.

Bit Description
31-0 Controller data.

ctrlStat1 Control and read the status of Controller Port 1

$0202
Read/Write

A read from this register gives the port status. Response format:

Bit Name Description
31 txFull Transmit buffer full (read only).
30 rxFull Receive buffer full (read only).
29 rxNull A flag that the last data received was a null response.
28 reFrame Writing a one to this bit sends at least 34 bits of zero. This will allow the

system to recover framing, and should always be performed after an error
occurs.
While this is happening, the transmit buffer will appear full.

27 reset Writing to this register sends at least 34 bits of one. This will reset all the
controllers.
While this is happening, the transmit buffer will appear full.

24 commSend When set, received data is transmitted on the Communication Bus to the target
identified below. When clear, the data will await polling.
This bit is shared with controller 2.

22-16 commID Target Communication Bus ID for the function above.
These bits are shared with controller 2.

15 rxOverflow Receiver overflow error. A long word was received before the previous one
had been read or transmitted over the Communication Bus. This bit is ‘sticky’
and will stay set until a one is written to it.

11-0 preScale This register controls the clock pre-scale counter that determines the controller
bus clock rate. This is a twelve-bit value, where the half clock period of the
output clock is given by the number of system clock cycles programmed here.
These bits are shared with controller 2.

ctrlRData1 Read Data from Controller Port 1
$0203
Read only

Reading from this register reads a data long word from controller port 1.

Bit Description
31-0 Controller data.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 267

ctrlCmd2 Send a Command on Controller Port 2

$0210
Write only

Writing to this register sends a command long word to controller port 2. Note that this will not be
sent until a command or data is written to port 1, as port 2 is the slave.

Bit Description
31-0 Controller command.

ctrlSData2 Send Data on Controller Port 2

$0211
Write only

Writing to this register sends a data long word to controller port 2. Note that this will not be sent
until a command or data is written to port 1, as port 2 is the slave.

Bit Description
31-0 Controller data.

ctrlStat2 Control and read the status of Controller Port 2

$0212
Read/Write

A read from this register gives the port status. Response format:

Bit Name Description
31 txFull Transmit buffer full (read only).
30 rxFull Receive buffer full (read only).
29 rxNull A flag that the last data received was a null response.
28 reFrame Writing a one to this bit sends at least 34 bits of zero. This will allow the

system to recover framing, and should always be performed after an error
occurs.
While this is happening, the transmit buffer will appear full.

27 reset Writing to this register sends at least 34 bits of one. This will allow guarantee
to reset all the controllers.
While this is happening, the transmit buffer will appear full.

24 commSend When set, received data is transmitted on the Communication Bus to the target
identified below. When clear, the data will await polling.
This bit is shared with controller 1.

22-16 commID Target Communication Bus ID for the function above.
These bits are shared with controller 1.

15 rxOverflow Receiver overflow error. A long word was received before the previous one
had been read or transmitted over the Communication Bus. This bit is ‘sticky’
and will stay set until a one is written to it.

11-0 preScale This register controls the clock pre-scale counter, that determines the controller
bus clock rate. This is a twelve-bit value, where the half clock period of the
output clock is given by the number of system clock cycles programmed here.
These bits are shared with controller 1.

PAGE 268 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ctrlRData2 Read Data from Controller Port 2
$0213
Read only

Reading from this register reads a data long word from controller port 2.

Bit Description
31-0 Controller data.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 269

SERIAL PERIPHERAL BUS INTERFACE

The NUON system has a hardware implementation of a standard serial peripheral device bus. It is a
multi-master synchronous serial bus running at up to 400 Kbits/second. It is used for communicating
with various peripheral devices.

The Serial Peripheral Bus is able to communicate with I2C bus devices if that bus protocol is followed.
The specification for the I2C bus is published by Philips and is available on their Web site.

There are two quite distinct parts to the NUON Serial Peripheral Bus interface: the master device and
the slave device. The master device generates a clock and addresses slave devices, and may read or write
data within a transfer. The slave part allows data to be read or written by some other master.

The master is programmed by setting up a series of byte transfers, either reads or writes, which may be
optionally qualified by a preceding start condition or by a succeeding stop condition.

The Serial Peripheral Bus can interrupt the MPEs to flag either that a master transfer has completed or
that a slave transfer has occurred.

Glitches on either the clock or data lines are rejected by the hardware up to a maximum duration of three
clock cycles, i.e. 54ns.

Serial Peripheral Bus Master
The bus master can transmit start codes, transmit or receive bytes, and transmit stop codes. The
formatting of a bus master transfer is up to software, and should conform to the protocol being expected
by the addressed slave. Up to an 8 byte transfer can be programmed with a single command, and you
can perform longer transfers by issuing consecutive commands.

The interface can run at a maximum rate of up to either 100 Kbits/sec or 400 Kbits/sec, according to its
mode setting. It will respect clock stretching by slave devices if applied, and can detect bus arbitration
failure in a multi-master environment. It also detects start and stop codes issued by other masters, and
will not attempt to use the bus while it is owned by another master.

If a transfer fails because a byte is not acknowledged correctly, it will properly terminate the transfer, by
issuing a stop command, and flag the error condition.

The bus master will generate an interrupt to the MPEs when it either completes the programmed
transfer, or encounters an error condition (this interrupt is combined with the slave interrupt).

Serial Peripheral Bus Slave
The slave interface can recognize its own 7-bit address, and can perform read or write transfers. These
will normally be 4 bytes long, to and from holding registers within the interface. The slave interface can
also be programmed to perform longer transfers by setting its hold control bit. In this mode the clock is
held low if either the receive-buffer fills or the transmit-buffer empties during a slave transfer. This
clock hold condition is cleared when software intervenes either to supply more transmit data or read the
received data, or to terminate the sequence.

When the transmitter empties or the receiver fills an interrupt is generated to the NUON software. You
can also poll to test for his condition.

PAGE 270 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Slave behavior for address mismatch
This diagram shows the behavior of the slave when the address does not match its internally
programmed address. The slave will take no part in the bus transaction, so the master will not see an
acknowledge, unless another slave acknowledges the transfer.
Master Slave Clocks Description
Start code
Slave address 7 must match that programmed into the slaveAddress

field of the spbSlaveStatus register described below
Read/not write 1 Must be a 1 for a read
 No action (Nack) 1 Slave will not acknowledge if the address does not

match.
Stop code

Slave behavior for a read of a long-word (4 bytes)
This table shows the behavior of the slave for a read transfer. The 7-bit address must match that
programmed into the slaveAddress field of the spbSlaveStatus register described below. The master
should read 4 bytes then terminate the transfer.
Master Slave Clocks Description
Start code
Slave address 7 must match that programmed into the slaveAddress

field of the spbSlaveStatus register described below
Read/not write 1 Must be a 1 for a read
 Ack 1 Slave will acknowledge if the address matches
 Data bits 31-24 8 First byte of long-word
Ack 1 Master must acknowledge byte
 Data bits 23-16 8 Second byte of long-word
Ack 1 Master must acknowledge byte
 Data bits 15-8 8 Third byte of long-word
Ack 1 Master must acknowledge byte
 Data bits 7-0 8 Fourth byte of long-word
Nack 1 Master need not acknowledge last byte
Stop code

Slave behavior for a read of two long-words (8 bytes)
This table shows the behavior of the slave for an extended read transfer. The slaveHold bit must be set,
and the 7-bit address must match that programmed into the slaveAddress field of the spbSlaveStatus
register described below. The master should read 8 bytes then terminate the transfer. This can be
extended for longer transfers, in multiples of 4 bytes.

Note that the clock will be held low by the slave on the first data bit of each long-word (i.e. bit 31 of the
first byte of the second long-word in this example), until NUON software supplies some more read data.
Master Slave Clocks Description
Start code
Slave address 7 must match that programmed into the slaveAddress

field of the spbSlaveStatus register described below
Read/not write 1 Must be a 1 for a read
 Ack 1 Slave will acknowledge if the address matches

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 271

 Data bits 31-24 8 First byte of first long-word
Ack 1 Master must acknowledge byte
 Data bits 23-16 8 Second byte of first long-word
Ack 1 Master must acknowledge byte
 Data bits 15-8 8 Third byte of first long-word
Ack 1 Master must acknowledge byte
 Data bits 7-0 8 Fourth byte of first long-word
Ack 1 Master must acknowledge byte
 Data bits 31-24 8 First byte of second long-word
Ack 1 Master must acknowledge byte
 Data bits 23-16 8 Second byte of second long-word
Ack 1 Master must acknowledge byte
 Data bits 15-8 8 Third byte of second long-word
Ack 1 Master must acknowledge byte
 Data bits 7-0 8 Fourth byte of second long-word
Nack 1 Master need not acknowledge last byte
Stop code

Slave behavior for a write of a long-word (4 bytes)
This table shows the behavior of the slave for a write transfer. The 7-bit address must match that
programmed into the slaveAddress field of the spbSlaveStatus register described below. The master
should write 4 bytes then terminate the transfer.
Master Slave Clocks Description
Start code
Slave address 7 must match that programmed into the slaveAddress

field of the spbSlaveStatus register described below
Read/not write 1 Must be a 0 for a write
 Ack 1 Slave will acknowledge if the address matches
Data bits 31-24 8 First byte of long-word
 Ack 1 Slave will acknowledge byte
Data bits 23-16 8 Second byte of long-word
 Ack 1 Slave will acknowledge byte
Data bits 15-8 8 Third byte of long-word
 Ack 1 Slave will acknowledge byte
Data bits 7-0 8 Fourth byte of long-word
 Ack 1 Slave will acknowledge byte
Stop code

Slave behavior for a write of two long-words (8 bytes)
This table shows the behavior of the slave for an extended write transfer. The slaveHold bit must be set,
and the 7-bit address must match that programmed into the slaveAddress field of the spbSlaveStatus
register described below. The master should write 8 bytes then terminate the transfer. This can be
extended for longer transfers, in multiples of 4 bytes.

Note that the clock will be held low by the slave on the first data bit of each long-word (i.e. bit 31 of the
first byte of the second long-word in this example), until NUON software clears the write data.
Master Slave Clocks Description
Start code
Slave address 7 must match that programmed into the slaveAddress

PAGE 272 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

field of the spbSlaveStatus register described below
Read/not write 1 Must be a 0 for a write
 Ack 1 Slave will acknowledge if the address matches
Data bits 31-24 8 First byte of first long-word
 Ack 1 Slave will acknowledge byte
Data bits 23-16 8 Second byte of first long-word
 Ack 1 Slave will acknowledge byte
Data bits 15-8 8 Third byte of first long-word
 Ack 1 Slave will acknowledge byte
Data bits 7-0 8 Fourth byte of first long-word
 Ack 1 Slave will acknowledge byte
Data bits 31-24 8 First byte of second long-word
 Ack 1 Slave will acknowledge byte
Data bits 23-16 8 Second byte of second long-word
 Ack 1 Slave will acknowledge byte
Data bits 15-8 8 Third byte of second long-word
 Ack 1 Slave will acknowledge byte
Data bits 7-0 8 Fourth byte of second long-word
 Ack 1 Slave will acknowledge byte
Stop code

Serial Peripheral Bus Control Registers
The Serial Peripheral Bus interface is controlled over the Communication Bus. It has its own packet
format so that a bus master transfer up to 8 bytes long can be programmed with a single Communication
Bus packet.

The Communication Bus status bits, set in the MPE comminfo register are used to control the action of
each Comm Bus packet. The top bit is a read write flag, i.e. $80 for reads and $00 for writes should be
added to the addresses given below, and placed in the transmit status bits.

spbMasterCommand
$00
Read/Write

This command packet initiates a Serial Peripheral Bus master transaction of up to eight bytes. At
the end of the transfer this may be read back again, and any read commands will have the read
data in the corresponding field.

Bits Description
122-120 Type for byte 0 transfer
119-112 Data for byte 0 transfer
106-104 Type for byte 1 transfer
103- 96 Data for byte 1 transfer
90- 88 Type for byte 2 transfer
87- 80 Data for byte 2 transfer
74- 72 Type for byte 3 transfer
71- 64 Data for byte 3 transfer
58- 56 Type for byte 4 transfer
55- 48 Data for byte 4 transfer
42- 40 Type for byte 5 transfer
39- 32 Data for byte 5 transfer

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 273

26- 24 Type for byte 6 transfer
23- 16 Data for byte 6 transfer
10- 8 Type for byte 7 transfer
7- 0 Data for byte 7 transfer

This corresponds to a 16-bit structure repeated 8 times for each byte. The first byte sent over the
bus is byte 0, held in the top 16 bits of the packet, i.e. the top 16 bits of scalar 0 of the vector.
The details of this structure are:

Bits Description
10-8 Type field. This tells the Serial Peripheral Bus master how to deal with this byte in the

transfer. Available types are:
0 nop do nothing - this will terminate any current master transfer
1 xmitByte transmit the corresponding byte
2 recvByte receive a byte and place it in the command buffer
3 xmitStart transmit a byte preceded by a start code
4 xmitStop transmit a byte followed by a stop code
5 recvStop receive a byte and buffer it, then transmit a stop code
6 xmitStartR transmit a byte preceded by a repeated start code

7-0 Data field. For transmit types this hold the data to be transmitted. For receive types the data
received is placed in this field, and is available when the command packet is read back.

Note that the xmitStartR type is only implemented in Aries 3 and upwards. It allows the start
code to be repeated in the middle of a master sequence. A master transaction that requires a
repeated start code must use xmitStart at the beginning of the sequence, xmitStartR in the
middle of it, and one of the two stop code forms at the end.

spbMasterStatus
$01
Read/Write

This register allows various aspects of the master’s operation to be controlled and observed. This
is a 32-bit register, and is read and written in the low 32 bits of the Comm Bus packet, i.e. scalar
3 of the vector. This register must not be written to during a master transfer unless it is to set the
abort command.

Bits Name Description
31 masterABort Aborts the master’s current operation immediately. This may be set

to one then zero to recover, should the bus hang for any reason. It
may be necessary to transmit a stop code after this to clear the bus.
This bit can also be set to completely disable the master.

30 masterFastMode Sets the bus to run at up to 400 Kbits/sec. When this bit is clear the
bus will run at up to 100 Kbits/sec.

29 masterNoArb When this bit is set, multi-master arbitration is disabled. If the
NUON is the only device on the bus, this might prevent false
arbitration failures. If the bus is operating properly, this bit should
never need to be set.

28 masterNotEmpty This error flag indicates that a command packet was written while
the previous command was still being processed. The newer packet
is ignored, and this flag will be set. This flag should be cleared by
software.

PAGE 274 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

27 masterNack This error flag indicates that acknowledge failure occurred during
the master transfer. If a byte is not acknowledged by the slave, then
the master will transmit a stop bit, end the current transfer, and set
this bit. The controlling software should then take appropriate
action, i.e. retry or give up. This flag should be cleared by software.

26 masterArbf This error flag indicates that an arbitration failure occurred during a
master transfer. An arbitration failure is detected if the data being
written during a transmit byte is high, but the bus remains low on a
rising clock edge. When this occurs the master transfer aborts
immediately. This flag should be cleared by software.

3-0 bytesToSend This read only counter shows where the master is in the command, 0
meaning that it is idle, and 8-1 being a down count as it works
through the bytes of the command packet. You can write anything to
these bits, it will not affect the counter.

spbSlaveTxData
$10
Read/Write

This 32-bit register holds the slave transmit data. Data is transmitted starting from bit 31. This
register is read and written in the low 32 bits of the Comm Bus packet, i.e. scalar 3 of the vector.

spbSlaveRxData
$11
Read Only

This 32-bit register holds the slave receive data. Received data is stored here starting from bit 31.
This register is read in the low 32 bits of the Comm Bus packet, i.e. scalar 3 of the vector.

spbSlaveStatus
$12
Read/Write

This register controls the slave’s operation, and allows its status to be observed. This register is
read in the low 32 bits of the Comm Bus packet, i.e. scalar 3 of the vector.

Bits Name Description
31 slaveAbort Aborts the slave’s current operation immediately. This may set to

one then zero to recover should the bus hang for any reason. This bit
can also be set to completely disable the slave.

30-24 slaveAddress The seven bits give the Serial Peripheral Bus address that the slave
responds to. The default is $42, being the answer to life, the universe
and everything in hex.

23 slaveRxFull This read-only flag is set when the receiver has received four bytes.
Reading the slave receive data register will implicitly clear this bit.

22 slaveHold This bit is used for slave transfers longer than 4 bytes. When either
receive or transmit completes 4 bytes then the Serial Peripheral Bus
clock is held low until software intervenes, either to transfer more
data or to clear this bit which allows the bus to clear.

21 slaveAlone This bit is used to separate the master and slave busses, so that the
internal slave is connected to GPIO 2-3 and the internal master to
GPIO 10-11. When this bit is clear the master and slave are

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 275

combined and connected to GPIO 2-3.
Aries 2 and up only.

10-8 slaveTxCount This counter indicates how many bytes the slave transmitter has
sent. It is set to zero when the transmit data register is written to.

3-0 slaveRxCount This read-only counter indicates how many valid bytes have been
received.

spbHysteresis
$20
Write Only

This register controls the rejection of noise on the I2C interface. The value is used for both clock
and data inputs for both the master and slave. The hysteresis controls the length of time, in
system (54 MHz) clock cycles, that a change on the input has to be stable for before it will be
recognized.

Bits Name Description
31-20 hysteresis This 12-bit value is the stable time required of an input change

before it is passed on to the master and slave logic. The default value
is 3.
Aries 2 and up only.

PAGE 276 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

DUAL SIO CHANNEL INTERFACE

Introduction
The dual SIO channel interface implements two serial IO channels for communication with external
devices, usually micro-controllers. This feature is available in Aries 3 and upwards. Prior to Aries 3 it
was implemented in an external ASIC code-named “Sally”.

The interface resides in the miscellaneous IO controller of the NUON chip. It communicates to the
NUON chip through the Communications Bus to read and write commands to and from the external
devices.

Note that it does not provide two discreet channels, as this interface is defined to fit a specific function.

Block Diagram
The following block diagram shows internal blocks of the interface:

CMBIO

SIOFE

SIOFP

system Clock

sclk0

srq0

txd0

rxd0

sallyAdx

sallyWr

cmbDataOutrrq0

sclk

srq

txd

rxd

rrq

SALLY MODULE
sallyReset

sysReset

cmbDataIn

5

32

32

The CMBIO module contains all the logic that communicates with the System Bus interface. It contains
all the registers that are shown in the programmer’s model below. The address bus consists of 5 bits of
word address (32-bits). See programmers model below for more detail.

The SIOFP and SIOFE modules perform the communication, and are identical.

Programmers Model
The registers described below are programmed over the Communication Bus. The miscellaneous IO
controller has Communication Bus ID 69 (hex 45). The communication protocol is as follows for the
command packet:

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 277

Long word Description
0 0-15 register address

31 set for write, clear for read
1 0-31 write data if a write command
2 unused
3 unused

The response packet is returned if the operation was a read. Its format is:

Long word Description
0 0-2 read status

16-31 register address of an IO read
1 0-31 read data
2 unused
3 unused

The following tables show the write and read IO registers

cmdArgs
$0080
Write Only

cmdArgs is a 32-bit register to send the argument to a command to the front end or font panel.
The most significant byte is the first byte to be sent onto the bus, and then, depending on the total
number of parameters, the rest of the arguments are also sent. cmdId will contain the actual
command id. The parameters should be written first since the command will be sent out as soon
as cmdId is written with the command id. There is a separate document that describes
commands and encoding.

Bits Name Description
31-0 cmdArgs 4 bytes of command arguments

cmdId
$0081
Write Only

See the comments on cmdArgs.

Bits Name Description
31-0 cmdId Command ID Register. Data sent when this is written.

cmdCount
$0082
Write Only

CmdCount is a 4-bit register used to indicate how many commands have to be sent out. If
sending to the front-end micom then set bit 3 to zero and bits 2-0 to the exact number of bytes
(including command id). If sending to the front panel micom then set bit 3 to ‘1’ and bits 2-0 to
000 if sending 1-byte or to 011 if sending 4 bytes.

PAGE 278 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bits Name Description
3 destination 0: for Tosh: count means exact # of bytes

1: for Sanyo: count of 0 means 1 byte
 count of 3 means 4 bytes

2-0 count Number of bytes of command to be sent

feRcvCnt
$0083
Write Only

FERcvCnt is a 1-bit register used to specify how many bytes to expect from the front-end
micom. For a status command we expect 5 bytes, for a TOC command 10 bytes are returned.

Bits Name Description
0 FERcvCnt 0: 5 bytes

1: 10 bytes

fpMode
$0084
Write Only

Fpmode is a 4-bit register holding the mode bits to be sent to the front panel.

Bits Name Description
3-0 Fpmode 4 mode bits for front panel

ctrlReg Control and Status register
$0085
Read / Write

The CtrlReg is a 6-bit register with the following control bits:

Bits Name Description
5 hShakeMode Setting this bit to 0 forces (power up state) forces Sally into

handshake mode with the front panel. This means that Sally will not
accept a new message from the front panel until the last message has
been read out of Sally, i.e. the FPReceived bit has been cleared. This
is used primarily at boot up since the front panel micom will send a
series of unsolicited messages to NUON that need to be read and
verified. In no handshake mode, the next incoming front panel
message will overwrite the current one if not read from NUON.

4 softReset Writing a ‘1’ to this location will reset the Sally chip to a power up
state. This is for diagnostic purposes only.

3 FPReceived This bit will be set when a message for NUON has been received by
Sally from the front panel. Writing a 1 to this location will reset this
bit.

2 cmdSentFP This bit will be set when the latest command to the front panel
micom has been sent out of Sally. Writing a 1 to this location will
reset this bit

1 cmdSentFE This bit will be set when the latest command to the front-end micom
has been sent out of Sally. Writing a 1 to this location will reset this
bit

0 statReady On a read status or a TOC type command this bit will be set when
the data has been received from the front end controller. Writing a 1

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 279

to this location will reset this bit

statusA
$0080
Read Only

The status registers are used to obtain the data after a command. For a 5-byte status command,
registers statusA and statusB are used.

This register holds the first four bytes received.

Bits Name Description
31-0 statusA First four bytes received

statusB
$0081
Read Only

Next four significant bytes received

Bits Name Description
31-0 statusB Next four significant bytes received

statusC
$0082
Read Only

Next two significant bytes received (left aligned)

Bits Name Description
31-16 statusC Next two significant bytes received

fpReceive
$0083
Read Only

Front Panel Receive Info:

Bits Name Description
31-24 ReceiveData receive data
10-8 fpMode
5-0 Status Same as the status register (see above)

debug1
$0086
Read Only

For debug purposes only. The Debug registers contain no useful information during normal
operation

debug2
$0087
Read Only

For debug purposes only.

PAGE 280 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 281

DEBUG CONTROL MODULE

The NUON system supports breakpointing of the system in various ways in order to allow real-time
debugging of operation.

A central debug control module, accessible over the Communication Bus, has a set of control registers
for debug and exception functions. Ideally, an external processor runs the debugger software and
interfaces with this module, although one of the internal processors may also perform this function. The
debug module generates a debug exception interrupt, which is handled by whichever processor is
running the debug software.

Debug conditions are:

• MPE debug condition. The MPEs support a variety of debug exceptions, and these are described
more fully in the MPE section.

• DMA data and address breakpoint comparator. This unit can compare for either an address, or an
address and data condition appearing during a DMA transfer. This may be independently enabled for
both read and write. The address may be in linear or XY form. It may also specify a bus master
which is either excluded from the condition, or is the sole bus master for the condition. When this
occurs all the MPEs can be frozen and a debug interrupt is generated. The current bus owner can be
determined. It can also breakpoint on address 0 to catch un-initialized pointers.

• DMA exception. The DMA controller will cause an exception on a range of illegal operations. These
can be handled either as a debug interrupt, or as a catastrophic system event, which requires an
external processor to debug and restart the system.

• DMA warning. The DMA controller will flag a range of dumb operations, such as zero length
transfers. These warning can be ignored, or can be handled in the same manner as DMA exceptions
so that the cause of the warning may be determined.

• Other Bus bad address exception. This means that an Other Bus command was issued with an
address that was not a valid Other Bus memory space. The transfer will complete harmlessly.

• System Bus bad address exception. A System Bus transfer occurred that, while within the overall
valid System Bus address, is not allowable within the current System Bus configuration.

MPE Breakpoints
A breakpoint or halt instruction may be present in the MPE program, which when it is executed causes
operation to be suspended, and a debug interrupt to be generated.

The breakpoint instruction may be inserted into source code, or used to over-write another instruction in
MPE program memory. Where it is used to over-write another instruction, if that instruction is longer
than 16 bits, then multiple breakpoint instructions must be inserted to over-write all of it. This means
that the instruction that follows the breakpoint is always valid.

A match between the Data Address Compare Breakpoint register and an MPE data transfer gives a data
breakpoint. This may be a scalar, pixel, small vector or vector transfer that includes this address. The
data breakpoint can be disabled, and can be restricted to only occurring on write cycles.

PAGE 282 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Exceptions
MPEs support internal exceptions, which normally result from instruction error conditions. Exceptions
can sometimes be handled within the MPE, but are usually considered debug conditions, and so they
stop the MPE by putting it into single-step mode, and interrupt the debug processor.

DMA Breakpoints and Exceptions
The DMA unit can cause breakpoints on certain transfer conditions, and can also cause warnings and
exceptions on certain conditions. Normally these are handled by interrupts to the debug processor which
can take appropriate debug actions.

DMA exceptions, and warnings, may therefore be configured to cause a catastrophic event. When a
catastrophic event occurs, all processors and activity in the NUON system shut down, and an external
host must be used to find the cause of the error. The external host will use either the System Bus to
query the system.

Debug Module DMA
The debug module can be used to perform read or write DMA transfers on the Other Bus or Main Bus of
one or two long words. This allows all of memory and the MPE state to be examined and modified
directly. It can also perform remote DMA transfers of any length between two other parts of system
memory, within the limitations of the corresponding bus.

Debug module DMA transfers have the highest priority on either bus. They are fired off by a write to the
base address register, and the transfer pending bit can be polled to determine when the operation has
completed.

This channel is intended solely as a back door for debug operations, and will be disabled on production
machines.

Watchdog Controller
The debug module contains a watchdog controller whose purpose is to ensure that the system will reset
itself should it stop executing its normal software. It is a count down timer of programmable length,
which should be set back to its initial value before the count reaches zero. Should the count reach zero,
then the NUON is reset to its power on state.

The watchdog control registers are described below.

Debug Module Control Registers
The registers described below are programmed over the Communication Bus. The debug controller has
Communication Bus ID 68 (hex 44). The communication protocol is as follows for the command packet:

Long word Description
0 0-15 register address

31 set for write, clear for read
1 0-31 write data if a write command
2 unused
3 unused

The response packet is returned if the operation was a read. Its format is:

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 283

Long word Description
0 unused
1 0-31 read data
2 unused
3 unused

debugCtrl Debug control
$0000
Read / Write

This register gives some debug control bits.

Bit Description
7 Soft reset to the MCU. While this bit is set, the MCU is held in reset.
6 Lock to disable the debug controller. This bit is cleared by a power-on reset or an external host

reset, and may be set, but not cleared, by software. Once set, no reads or writes can be
performed to the debug controller.

5 Lock to make the debug controller accessible only to the MPEs. This prevents a malicious
external host from using the debug controller to compromise security. This flag is set by a
power-on reset or an external host reset, but may be modified by the MPEs.

4 Enables setting of the system stop flag by Main Bus DMA exceptions. Defaults to enabled.
3 System stop flag. This bit is normally set by a DMA exception, and optionally by warnings and

breakpoints, and causes the Main Bus DMA controller to freeze. This can be set and cleared by
software.

2 Enables setting of the system stop flag by Main Bus DMA warnings. Defaults to disabled.
1 Enables setting of the system stop flag by Main Bus DMA breakpoints. Defaults to disabled.
0 System reset flag. All system resources outside the debug module are restored to their power-

on state. This bit is cleared by the hardware.

intEna Exception Interrupt Enables
$0001
Read / Write

This register allows the individual exceptions to cause debug interrupts.

Bit Description
31 System Bus address exception interrupt enable
30 DMA breakpoint interrupt enable.
29 DMA warning debug interrupt enable.
28 DMA exception debug interrupt enable.
27 Other Bus bad address exception interrupt enable.
3 Enable a debug interrupt on an MPE 3 exception.
2 Enable a debug interrupt on an MPE 2 exception.
1 Enable a debug interrupt on an MPE 1 exception.
0 Enable a debug interrupt on an MPE 0 exception.

mpeReset MPE Reset Control
$0002
Read / Write

This register allows individual MPE units to be reset. These should be set then cleared again by
software

PAGE 284 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Description
3 Reset MPE3.
2 Reset MPE2.
1 Reset MPE1.
0 Reset MPE0.

intFlags Debug Interrupt Flags
$0003
Read only

This register flags the source of a debug interrupt.

Bit Description
31 System Bus bad address interrupt
30 DMA breakpoint interrupt
29 DMA warning interrupt
28 DMA exception interrupt
27 Other bus Bus bad address exception interrupt.
3 MPE 3 exception interrupt
2 MPE 2 exception interrupt
1 MPE 1 exception interrupt
0 MPE 0 exception interrupt

intClear Clear Debug Interrupts
$0003
Write only

This register allows interrupt latches to be cleared. Writing a one clears the corresponding latch,
writing a zero has no effect, and there is no need to write a zero after a one.

Bit Description
31 System bus Bus bad address interrupt
30 DMA breakpoint interrupt
29 DMA warning interrupt
28 DMA exception interrupt
27 Other bus Bus bad address exception interrupt.
3 MPE 3 exception interrupt
2 MPE 2 exception interrupt
1 MPE 1 exception interrupt
0 MPE 0 exception interrupt

debugDmaCtrl Control Bits for Debug DMA
$0010
Read / Write

This register controls the operation of Debug DMA debug transfers.

Bit Description
4 Debug DMA abort. Setting this bit clears the debug DMA state machines, allowing DMA

warning or exception conditions to be cleared.
3 Main Bus transfer pending flag. This will be set for a Main Bus Transfer from when the base

address register is written to when the data transfer has completed. You should ensure this bit
is clear before reading from the transfer data or writing to any of these Debug DMA registers.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 285

2 Target mainMain bus Bus instead of otherOther bus Bus. This defaults to zero (Other Bus).
1 Other Bus Bus transfer pending flag. This will be set for an Other Bus Transfer from when the

base address register is written to when the data transfer has completed. You should ensure this
bit is clear before reading from the transfer data or writing to any of these Debug DMA
registers.

0 Read transfer flag. This should be set for read transfers and clear for write transfers. Note that
bit 13 of the Command Word 1 register also controls this bit.

debugDmaCmd1 Command Word 1 for Debug DMA
$0017
Read / Write

This register holds the first long-word of the command for the Debug Controller DMA transfer.
These are the flags that control the DMA transfer for all types. As all these bits are
programmable, other forms of DMA may be performed, such as a transfer from System Bus
space to internal memory for faster downloads. After reset, this register defaults to $10010000.

Note that the read bit of the control register above is duplicated in bit 13 here.

Bit Description
31-0 DMA command long-word 1

debugDmaCmd2 Command Word 2 for Debug DMA
$0011
Read / Write

This register holds the second long-word of the command for the Debug Controller DMA
transfer. This is the base address of the transfer for most DMA operations. After reset this
register is not defined.

A write to this register triggers the DMA operation.

Bit Description
31-0 DMA command long-word 2

debugDmaCmd3 Command Word 3 for Debug DMA
$0016
Read / Write

This register holds the third long-word of the command for the Debug Controller DMA transfer.
This is the internal address for Other Bus transfers, and has various functions for Main Bus
transfers. After reset this register defaults to $FFF00000.

Bit Description
31-0 DMA command long-word 3

debugDmaCmd4 Command Word 4 for Debug DMA
$0018
Read / Write

This register holds the fourth long-word of the command for the Debug Controller DMA
transfer. This is not used for Other Bus transfers, bit is used for pixel mode Main Bus transfers.
After reset this register is not defined.

PAGE 286 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Description
31-0 DMA command long-word 4

debugDmaData0 Transfer Data Long-word 0 for Debug DMA
$0012
Read / Write

This register holds both the read and write data for Debug DMA transfer. It should be written to
before the command is written for write operations, and can be read once the transfer pending
flag has cleared for read operations.

If a single long word is transferred, this register is always used. If two long words are transferred,
this is the lower address of the pair.

Bit Description
31-0 Debug DMA transfer data long word 0

debugDmaData1 Transfer Data Long-word 1 for Debug DMA
$0013
Read / Write

This register holds both the read and write data for Debug DMA transfer. It should be written to
before the command is written for write operations, and can be read once the transfer pending
flag has cleared for read operations.

If a single long word is transferred, this register is not used. If two long words are transferred,
this is the higher address of the pair.

Bit Description
31-0 Debug DMA transfer data long word 1

debugRegLock Locks for individual register within the debug controller
$0021
Read / Write

This register allows individual register within the debug controller to be locked. As the set
includes this register, these lock bits can themselves be locked. The default state for bits in this
register is set, i.e. writes to all registers are enabled.

This function is available from Aries 2 onwards.
Bit Name Description
31 debugCtrlWrEna When set, the debugDebugCtrl register may be written to.
30 intEnaWrEna When set, the debugIntEna register may be written to.
29 mpeResetWrEna When set, the debugMpeReset register may be written to.
28 intClearWrEna When set, the debugIntClear register may be written to.
27 dmaCtrlWrEna When set, the debugDmaCtrl register may be written to.
26 dmaCmd2WrEna When set, the debugDmaCmd2 register may be written to.
25 dmaData0WrEna When set, the debugDmaData0 register may be written to.
24 dmaData1WrEna When set, the debugDmaData1 register may be written to.
23 dmaCmd3WrEna When set, the debugDmaCmd3 register may be written to.
22 dmaCmd1WrEna When set, the debugDmaCmd1 register may be written to.
21 dmaCmd4WrEna When set, the debugDmaCmd4 register may be written to.
20 regLockWrEna When set, the debugRegLock register may be written to.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 287

Watchdog Timer
NUON contains a watchdog timer that may be used if it is necessary to ensure that the system can
recover in some manner from a crash. When this function is enabled, software must regularly re-trigger
the timer, or the system will be reset. This function is part of the debug controller.

wDogCtrl Control Bits for the Watchdog
$0020
Write only

This register controls the operation of the watchdog circuit. This is a down counter, which will
reset NUON unless it is re-triggered before it reaches zero. This is generally used as an
emergency recovery mechanism for systems that have crashed.

Bit Description
31 Re-trigger the watchdog. The counter is reloaded with its start value and commences counting

down again.
30 Watchdog lock. If a one is written to this bit then the watchdog is locked. The only action that

you can perform after you have set this bit is set is a re-trigger. You cannot unlock it, disable
it, or change the watchdog count value.

29 Watchdog enable. Until this bit is set the watchdog is idle.
28-0 Watchdog count value. This is the interval, in main (54 MHz) clock cycles, that is required

between re-trigger actions to prevent a system reset.
Aries 2 and earlier – this is a 24-bit count value in bits 23-0.

PAGE 288 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

MACROBLOCK DECODING UNIT (BDU)

This section describes the macroblock decoding hardware unit. This unit performs the decoding of one
complete macroblock at a time upon receiving a command from MPE2. The main components of the
MPEG hardware decode path are:

• CDI: The coded data interface talks to the external world, receiving a PES stream or a program
stream and transferring the data to MPE1 via the Communication Bus.

• MPE1: Media Processor Element number 1: The main function of this processor is to decode and
transfer data from the CDI to the BDU shifter through the VBV Buffer and vldDma interface.

• MPE2: Media Processor Element number 2: The main function of this processor is to decode the
higher stream layers and the motion vectors and control the BDU hardware

• BS: The bit shifter requests bit stream binary data from the vlddma (from MPE1) and provides the
data to a consumer. The consumer could be MPE2 to perform high level parsing or the VLC
(variable length code) decoder unit in the BDU. Another consumer is the dc code decoding logic for
intra blocks.

• VLD : This is the Huffman code (VLC) decoding unit. It reads valid data from the bit shifter,
decodes it and informs the bit shifter how many bits have been consumed. The VLD unit provides 64
levels per block to the DZZ, de-zig-zag unit.

• DZZ: The de-zig-zag unit contains a 64x12 single port RAM that is written with the data coming
from the VLD unit in zig-zag order and read by the IQ unit in normal order (determined by the IDCT
logic).

• IQ: The inverse quantization unit reads the data from the zigzag memory in the order required by the
IDCT unit and performs the inverse quantization of this data. It has a 32x32 RAM that will hold the
two current inverse quantization matrices.

• IDCT: The IDCT unit performs the inverse discrete cosine transform algorithm over all the inverse
quantized blocks in coming from the IQ unit. Each block is fed into the motion compensation unit
(MCU) for further processing (this unit is not part of the BDU, please see a separate specification of
it).

• DMA: Direct Memory Access engine (subject of a separate document)

• MCU: Motion Compensation Unit (subject of a separate document)

The BDU ‘s components are the BS, VLD, DZZ, IQ, and IDCT units. The other units are the subject of
separate chapters.

The following block diagram shows the major data and control path in the MPEG hardware decoding
unit,

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 289

MCU

SDRAM

DMA

MPE2

BS

VLD

DZZ

MCU

MPE IO

BDU

dc
Te

rm

vl
dD

at
a

RAM

Le
ve

ls

Run
Level

D
eZ

ig
Zi

g
Le

ve
ls

IQ

IQ
-L

ev
el

s

IDCT

Stream CDI VLD-DMAStream Data

Shift Value

block done irq

Error Data

D
M

A
Ve

ct
or

s

Fetch/Writeback

Control

Control

MPE1

BDU IO Interface

Bitstream Data Interface
The bitstream data interface allows stream binary data to be fed into the bit shifter for further processing.
This is achieved by requesting data from the vld dma (see MPE specification) module attached to
MPE1. From the BDU point of view, the bit shifter control logic issues a request to MPE1. MPE1 will
reply when a new set of 16 bits are available. The next new serial bit will be in the most significant
location.

PAGE 290 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

MPE2 Command Interface
The BDU internal control and command registers can be read and written by MPE2 as any other
coprocessor space registers. The BDU has a 5-bit (long-word aligned) address space between MPE2 IO
address $20501200 and address $205013F0.

Two bits in the interface are used as two additional condition codes into the execution unit of MPE2.
This allows and easy way of waiting and acting on status information coming from the BDU. These bits
are coprCC[1], which if asserted indicates a start code has been found after a getStartCode command
and coprCC[0] which is used to indicate to the driver code if the data read by MPE2 from the bit shifter
was valid or not.

The following are the write only addresses:

vldcmd VLD Command Register
vldcmd = $2050 1200
Write only
MPE 2 only

This is the BDU command register (called VLD because of historical reasons). It holds a three
bit command for the BDU:

Code Command Description
000 NOP No Operation
001 getStartCode Bit shifter will consume bit stream data until a start code is found. The

start code id bits will be the most significant bits sitting in the vldData
register. CoprCC[1] condition code will be set upon successful
completion of this command

010 resetDcPredictor MPE2 indicates to the BDU to reset its dc predictors
011 resetBitShifter MPE2 indicates to the BDU to reset the bit shifter
100 resetBdu Soft reset for the whole BDU unit
101 decodeMBlock MPE2 indicates to the BDU to decode a macroblock starting with the

current contents of the vldData register
110 clrErrorBits MPE2 indicates to the BDU to clear error bits in error register

The getStartCode command will clear the coprCC[1] bit indicating start code detected and will
set it again when a start code is found. The following piece of code makes efficient use of this
logic:

mv_s #get_start_code_cmd, temp ; get start code command
st_s temp, (vldcmd) ; issue get_start_code command
nop ; make sure that cf1lo bit is

; cleared in hw
wait_for_start_code :

jmp cf1lo, wait_for_start_code, nop
; wait in this loop until
; start code is detected

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 291

vldmode VLD Mode Register
vldmode = $2050 1210
Write only
MPE 2 only

This register, sets a few important mode bits critical for the BDU operation. These bits are
chosen so that they will not change too often (not on a per macroblock basis). The mode bits are:

Bit Name Description
0 intra_vlc_format Follows the status of this bit in the bitstream. Used to decode which AC

VLC table to use
1 reserved Unused
2 scanOrder Indicates if normal (0) or alternate scan order (1)

6-3 intra_dc_mult 0010: 2
0100: 4
1000: 8

7 streamType 0: mpeg2 stream
1: mpeg1 stream

vldmblock VLD Mblock Register
vldmblock = $2050_1220
Write only
MPE 2 only

This register holds a few configuration bits important for macroblock decoding that are likely to
change on macroblock per macroblock basis.

Bit Name Description
6:0 quantScaleValue quantizer scale value (from bits stream)
7 intraMBlock indicates if intra(1) or non-intra (0) mblock
8 dct_type indicates if field (1) or frame (0) dct_type

vlcbp CBP register

$20501230
Write only
MPE 2 only

This register holds 6 bits with the coded block pattern for the macroblock being decoded.

Bit Description
0 if set : block 5 is coded
1 if set : block 4 is coded
2 if set : block 3 is coded
3 if set : block 2 is coded
4 if set : block 1 is coded
5 if set : block 0 is coded

PAGE 292 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

vldbits VLD Bits
$2050 1240
Write only
MPE 2 only

This register is used when the MPE has control over the bit shifter. When this 5-bit register is
written, the bit shifter will shift the current vldData contents by the amount indicated in vldBits
(0 to 28). If this register is written while BDU has control over the bit shifter (after a decode
macroblock command and before a end of macroblock interrupt), strange things can happen.
Also the driver must ensure that there is enough valid data to be shifted out. It will take at least 2
ticks until the new shifted data is ready to be read. When the coprCC[0] bit is set, data in vldData
is valid. The following code shows an efficient way of using this command:

st_s #17, (vldbits) ; store number of bits to consume
; (17 in the example)

ld_s (vlddata), temp_input0 ; load new data (2-tick operation)
jsr cf0lo, vlddata_retry, nop

; jump on coprCC[0] if vlddata
; not valid to retry

vlddata_retry :
push r0, cc,rzi1,rz ; push stuff (if needed)

vlddata_retry_loop :
ld_s (vlddata), temp_input0 ; retry loading from vlddata
jmp cf0lo, vlddata_retry_loop, nop

; if vlddata not valid keep retrying
rts ; return if done
pop r0, cc,rzi1,rz ; pop stuff if needed
nop

vldctrl BDU Ctrl
vldctrl = $2050 1250
Write only
MPE 2 only

These two bits perform BDU control tasks as follows:

Bit Name Description
0 startCodeEnable Enable start code detection logic
1 bitShifterEnable Enable bit shifter logic

vldresetiqvalid Reset IQ Valid
vldresetiqvalid = $2050 1260
Write only
MPE 2 only

Writing to this address will reset the IQValid status bit. This command should always be
executed before issuing a Communication BusCommunication Bus transfer command, to transfer
IQ data from the DZZ memory to the IQ tables memory

The following are the read only addresses. The values are right justified into the 32 bit read data bus.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 293

vldstatus VLD Status Register
vldstatus = $2050 1300
Read only
MPE 2 only

This register contains three status bits:

Bit Name Description
7 iqValid Indicates that the data in IQ memory is valid after a Communication Bus

transfer command.
1 bsDcVlcErr bad VLC found in DC term decoding process
0 realVlcErr bad VLC found in decoding of AC elements

The two error bits can be cleared with the clrErrorBits command. The iqValid bit can be reset
with the Reset IQ Valid command.

vlddata VLD Data Register
vlddata = $2050 1310
Read only
MPE 2 only

This 28-bit register contains the current data coming out of the bit shifter. If this data is valid or
not is indicated by the coprCC[0] as indicated above. This register is used to enable the MPE to
make use of the bit shifter to decode the upper layers of a video bit stream. Up to 28 bits can be
shifted out in a single operation.

vldzeros VLD Zeros Register
vldzeros = $2050 1320
Read only
MPE 2 only

This 4-bit register indicates the current number of leading zeros in the VLD Data register (from 0
to 15 leading zeros). It is up to the driver to ensure that the bits are valid (coprCC[0]).

vlddebug1 Debug 1
vlddebug1 = $2050 1330
Read only
MPE 2 only

This and the next two registers are mostly used for debugging purposes to enable reading of
internal status of important registers and state machines. It can also be used for driver
development

Bits Name Description
20:13 vldMode Contents of vldMode register
12:7 cbp Contents of CBP register
6:2 vldBits Contents of vldBits register
1:0 bduCtrl Contents of bduCtrl register

PAGE 294 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

vlddebug2 Debug 2
vlddebug2 = $2050 1340
Read only
MPE 2 only

See comment on Debug1 register

Bits Name Description
29:28 cntOut bs input fifo counter
27:12 dbgOutReg outputReg in bs. Data that is not visible in vldData
11:9 vldCmd Contents of vldCmd register
8:0 vldMblock Contents of vldMblock register

vlddebug3 Debug 3
vlddebug3= $2050 1350
Read only
MPE 2 only

See comment on Debug1 register

Bits Name Description
31 swSection state bit from bs state machine
30:25 vldCount number of valid bits in vldData
24:20 dzzIqState state of dzz Iq control state machine
19:17 vldState state of vld control state machine
16:14 mainBsState state of main bit shifter control state machine in bs module
13:11 scState state of start code control state machine in bs module
10:8 bsState state of bit shifter control state machine in bs module
7:5 dcState state of dc term control state machine in bs module
4:0 idctState state of idct control state machine in idct module

BDU Interrupts
There are two pulse interrupts from the BDU unit to MPE2. These are:

• endOfMbIrq : End Of Macroblock Interrupt. This interrupt is asserted when the last block of the
current macroblock has finished using the bit shifter. The latter is available now to be used by MPE2
to decode further downstream until the next macroblock

• bduErrorInt : Bdu Error Interrupt: This interrupt is currently asserted in two scenarios: If the vld
decoding logic detects a dc component vlc error or a ac component vlc error.

Communication Bus Interface (Communication Bus)
The BDU unit is connected also to the Communication Bus to allow access to internal structures such as
the de-zigzagger memory and the IQ table memory. The idea is to provide some flexibility to be able to
use the BDU with other applications and also to increase the visibility for debugging purposes. The
Communication Bus ID for the BDU is 73 (decimal). Please see the DZZ and IQ section for details on
Communication Bus transaction with the BDU.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 295

BDU Units

Bit Shifter
The Bit Shifter units talks to MPE2 through the vld dma interface. For details on this interface, see the
“Bitstream Data Interface” paragraph above. It’s main mission is to maintain at least 28 valid bitstream
bits available at all times to be used by the vlc decoding unit or by MPE2. The valid data is IO mapped
on MPE2. Once data is consumed by one of the clients (MPE2, vlc decoder, start code detection logic or
dc term decoding logic), they can request a left shift from 0 to 28 positions. From MPE2 this is done
through the vldBits register and from all the other units this is accomplished through a control bus.

The following block diagram show the main units, data paths, and shift control sources for the Bit
Shifter unit

shift control

28

28
28

5

5

dc term
decoding

start code
detection

16

from
vldDma

vldBits
(from MPE2)
5

5

from
VLD

to
VLD

The following figure shows a block diagram of the shift control logic of the bit shifter unit.

PAGE 296 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Control
Logic

16

16

16

16
stage 2

stage 1

stage 0

valid
count

+16

preShift

mergeIn

vldZeros

output register

shift source

start code shift
dc term shift
vldBits shift
vlc decode shift

to vlc
decode

logic

28 44

44
44

+
-

5

6
6

Barrel
Shifter

Barrel
Shifter

from MPE

44

4

vldDataValid
if valid count <= 28

On top of the shifting logic is a three stage 16 bit wide FIFO that reduces the probability of stalling
when data coming from the vld dma logic in MPE1 has to be delayed for any reason. The unused data in
the output register is fed back, reshifted, and merged in with new data coming from the vld dma logic.
The amount of consumed data is determined by the mux on the right that selects between the four
sources for shift data MPE2 through vldBits register, start code detection logic, vlc code decoding logic,
and dc term decoding logic).

The most significant 28 bits out of the output registers are passed to the data clients (it can be read by
MPE2 through the vldData register). The data is valid when those 28 bits are valid as indicated by the
vldDataValid signal. This signal is also used by the BDU logic to generate the coprCC[0] condition code
bit.

MPE2 is able to use the bit shifter through the vldBits coprCC[0] mechanism as shown earlier, to parse
and decode all the higher stages of a MPEG2 stream. Once it has decoded a macroblock header and
loaded the control registers with the appropriate (cbp, vldMode, vldMBlock) values, MPE2 will issue a
decode macroblock command to the BDU and will relinquish control of the bit shifter until the BDU
unit is done parsing the data for the current macroblock (indicated through the endOfMbIrq interrupt
generated in the vld unit).

When the bit shifter unit gets a ‘decode macroblock’ command and using the data in the control
registers, the BS logic will first decide if a dc term decoding is necessary (for intra macroblocks). If so
required, the dc term decoding state machine will take control over the shift control logic and decode the
dc term for the next block and store it in the vldDc register, as well as update the predictor registers.
Upon completion of the dc term, the VLD module will take control of the bit shifter and start decoding

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 297

all 64 (or 63) ac terms of each block. When a new shift value is provided to the shift control logic, the
shifted data will appear in the vldData register and bus after the next clock rising edge.

VLD
The VLC Decoding unit takes valid bitstream data from the bit shifter, does a table lookup to extract
run/level pairs, provides the runs of zeroes and the levels to DZZ unit and indicates to the Bit Shifter
unit how many bits have been consumed. The following is a block diagram of the VLD unit.

 vlc
tables

vldDataValidvldData

run level

vld decode shift
(to BS unit)

run
generation

logic

528

6 12

vldNewBlock levelData (sign magnitude
 [-2047 to 2047])levelValid

12

(to DZZ logic)

clk

Providing no stalls from the upper pipe stages, it is possible for the vlc decoding logic to decode 1
symbol on every clock tick for any legal sequence, with exception of escape code variable length codes
which could take up to 2 symbols in MPEG1. The largest single symbol in MPEG1 or MPEG2 is 28 bits
(MPEG1 escape level) and the bit shifter can handle that in 1 clock tick.

The first element of a new block (could be element 0 or 1 depending on the macroblock type) is
accompanied by a set vldNewBlock signal, to indicate this fact to the DZZ logic. The levelData
(validated by levelValid) is represented in sign-magnitude format (from -2047 to +2047].

DZZ
The de-zigzagger unit accepts the incoming data from the vlc decoding unit, writes it into a 64x12 static
ram in one of the two zigzag orders allowed in the MPEG2 specification. It then allows the lower pipe
stages from the BDU to read the data in raster scan order. The read order is actually driven by the order
required by the IDCT (see chapter below), but the data in the DZZ RAM is in Raster scan order for the
current block. Since the DZZ and the IQ units are so closely related, the following block diagram show
both units.

PAGE 298 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

64x12
RAMw

rtD
ata

Comm Bus
Interface

Comm Bus
Control

Dzz Address
Generation

levelData

12

levelValid
vldNewBlock

w
e

address

modeBits

6

rdData

10

dcTerm

de-zigzag Data
(to IQ)

(from VLD)

12 12

11

if non-intra & non-zero:
(x2)+1

12

sign bit

intra_dc_mult

quant_scale

intra dc
term

7

19

32x32
RAM

32

NI

I

32

32

8

sign bit

8

19
sign bit

>>5
27

Overflow
Check

sign bit

11

11

clip and mismatch control
or oddification (mpeg1)

11

13 IQData
(to IDCT)

32

32

12

transfer

IQ

DZZ

13

IQNewBlock

The Communication Bus Control logic for the DZZ/IQ unit accepts a few commands as shown in the
following table.
Command Id Comment
Fill IQ Intra 1 Write to IQ ram intra section
Fill IQ Non-Intra 2 Write to IQ ram non-intra section
DZZ read 3 Read the DZZ Ram
DZZ fill 4 Write to DZZ Ram
IntraTransfer 5 Transfer DZZ Ram to IQ Ram Intra section
non-intraTransfer 6 Transfer DZZ Ram to IQ Ram Non-Intra section

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 299

Read IQ 7 Read IQ memory

The Communication Bus Control logic for the DZZ/IQ unit on the three least significant bits of the first
long word of the message as follows:

127 096 63 32
98

0 0 00
C
M
D

The Fill IQ Intra command is used to write to the Intra section of the IQ RAM (32x32 Ram, addresses
16 to 31). First the command is sent as above and then four Communication Bus packets with 16 bytes
each are sent with the 64 data bytes. The first byte of the first long will go into the first address (16) and
so on.

The Fill IQ Non-Intra command is used to write to the non-intra section of the IQ RAM (addresses 0 to
15). The procedure is similar to the above

The DZZ read command, allows any Communication Bus master to read the DZZ RAM contents. The
reply will be sixteen Communication Bus packets directed at the source of the request with four data
elements each with the following format:

127 096 64 32
Data0 Data1 Data2 Data3

107 75 43 11

0 0 0 0

Data0 of the first message is the DC term and Data1 is the first AC term and so on.

The DZZ fill command, allows any Communication Bus master to load the DZZ RAM with random
data. The command is sent as seen above. Then, DZZ expects 16 more messages with 4 dzz ram entries
each with the same formatting as the read DZZ command.

Data 0 is the left most entry of the four in raster scan order (lower frequency element).

The intraTransfer and non-intraTransfer command are used to transfer data from the DZZ memory to the
IQ memory holding the IQ weights. The commands are different for intra and non-intra macroblocks
since there are two current matrices stored at different base addresses in the IQ logic. This is useful to
use the DZZ ram to de-zigzag the IQ weights coming in the bitstream. Before issuing a transfer
command, the driver should issue a resetIqValid command, so that the corresponding status bit gets
reset. This bit will get set when the weights matrix has been completely written into the corresponding
IQ ram. Both these commands use the format show above.

The Read IQ command is sent as shown above and it is used to read the contents of the IQ memory. The
data is packed onto 8 consecutive Communication Bus packets with 16 bytes each. The first byte of the
first long of the first message has address 0 and so on. This command was added only after Aries 2.1
(i.e. should be only after Aries 3.0)

IQ
The IQ unit will read the values out of the DZZ memory in the order requested by the IDCT unit, and
perform the inverse quantization of each element. The block diagram is shown above in the DZZ
section, since both units share a considerable amount of logic.

The 12-bit sign-magnitude data is read from the DZZ ram. The sign bit is pretty much propagated
untouched down the pipe to the IDCT. The magnitude is multiplied by two and incremented if it is a

PAGE 300 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

non-intra block and a non-zero element. The resultant 12-bit value is multiplied by the intra_dc_mult
value, if this is an intra macoblock, or by the quantizer scale value, if this is an ac coefficient. The full
precision result is 19 bits wide, and it is multiplied in the next pipe stage by the IQ weight read from the
weight’s RAM.

The resulting 27 bits magnitude is divided by 32 and the upper 11 bits are OR’d together to see if
overflow has happened. In this case the next stage will clip the result to the IDCT input range ([-2048,
2047]). The final logic will perform mismatch control or oddification (for mpeg1 streams) and the 13-bit
final sign-magnitude data is passed to the IDCT block.

For the DZZ to MCU (through IDCT and IQ) pipe, there is no stalling mechanism. When the last block
element is written into the DZZ RAM, this pipe is triggered and will only stop when the whole block has
been written to the MCU ram. Therefore, all the IDCT needs to know is when a new block
(IQNewBlock) is available to start processing the whole block without interruption. It is up to the
scheduling of events done by the driver running on MPE2 to make sure that there is room in the MCU
buffers for the current macroblock in the BDU pipe.

IDCT
The IDCT unit performs the inverse discrete cosine transform operation on a block-by-block basis as
defined in the MPEG2 specifications

IDCT PRECISION ANALYSIS
This section describes the considerations used for the idct precision analysis model and hardware
implementation. This implementation is with two 1-D transforms using identical hardware. The original
8x8 block in the frequency domain is transformed by the hardware row by row (or column by column)
and the intermediate result is stored in RAM. The same hardware performs a second pass reading the
intermediate block from the RAM processing it and producing the samples in space domain. The IDCT
operation has to meet the precision numbers specified in the IEEE Std 1180-1990 document.

The basic IDCT transform equation is

f y x
C v C u

F v u x
u

y
v

(,)
() ()

* (,) *cos[() *]*cos[() *]= + +∑ ∑2 2
2 1

16
2 1

160

7

0

7 π π

where
C u

C u

()

()

=

=

1
2

1

u

u

=

>

0

0

C v

C v

()

()

=

=

1
2

1

v

v

=

>

0

0

Due to separability, this can be performed with two 1-D operations according to the following equation:

f x
C u

F u x
u

()
()

* () *cos[() *]= +∑ 2
2 1

160

7 π

which in turn translates into the following matrix operation for each 8x8 row or column of the original
frequency domain block

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 301

f
f
f
f
f
f
f
f

()
()
()
()
()
()
()
()

0
1
2
3
4
5
6
7

=

C C C C C C C C
C C C C C C C C
C C C C C C C C
C C C C C C C C
C C C C C C C C
C C C C C C C C
C C C C C C C C
C C C C C C C

0 1 2 3 4 5 6 7
0 3 6 7 4 1 2 5
0 5 6 1 4 7 2 3
0 7 2 5 4 3 6 1
0 7 2 5 4 3 6 1
0 5 6 1 4 7 2 3
0 3 6 7 4 1 2 5
0 1 2 3 4 5 6

− − − − −
− − −
− − − −

− − − −
− − − − −
− − −
− − − −

C7

F
F
F
F
F
F
F
F

()
()
()
()
()
()
()
()

0
1
2
3
4
5
6
7

where the constants are defined as Ck
C k k

=
()

*cos()
2 16

π
. There is clear mirror type symmetry along the

horizontal centerline which is used in the hardware implementation. Also, we observe that

C C0 4
1

2 2
= = . Two symmetrical terms can be calculated at the same time. For example:

PE C F C F C F C F
PO C F C F C F C F

f PE PO
f PE PO

= + + +
= + + +

= +
= −

0 0 2 2 4 4 6 6
1 1 3 3 5 7 7

0
7

* () * () * () * ()
* () * () * (5) * ()

()
()

The two precision parameters to determine are how many bits to be used for the constants and how
many bits are required for the intermediate value. The input range is [-2048,2047] (12 bits) and the
output needs to be rounded and clipped to [-256,255] (9 bits).

Let Ci be the #C bits wide i-th coefficient width and #I be the intermediate RAM width.

Since the same data path has to be used for the 1st and 2nd passes the original 12 bit inputs needs to be
left shifted to match the width of the intermediate value (#I). The coefficient is shifted left by #C to
avoid the floating point. To obtain one of the f(x) (1 pass) we calculate:

F Ci
I

i
C

0

7
122 2∑ −* * *# #

Each product term is #I+#C bits wide. If #M is the right shift after each product term multiplication
(reduction in fracbits), the width of each term is #I+#C-#M. Considering the maximum ranges for F and
C, it is easy to verify that the previous equations output cannot exceed 15 integer bits for the first pass.
In other words, we will have #I-15 fractional bits in the intermediate RAM module and the summation
add 3 bits to the 12 integer input bits. The final sum, will also have #I-12 zeroes to the right which can
be left out of the intermediate value. Therefore the intermediate value can be rewritten as the total
summation width minus all the right-most zeros:

PAGE 302 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

(#) #I C M I I+ − + − − =3 12

from where we obtain that the multiply shift value need be:

#M C I= − +15

The second pass is the following summation

J Ci i
C

0

7

2∑ * * #

where Ji is the intermediate value from the RAM. Each product term is of width #I+#C and after the
multiply shift #I+#C-#M = 2x#I-15. Since we expect integer outputs, we have to adjust for the #I-15
fractional bits of the Ji (the summation doesn’t add fracbits) and the #C left shifting of the coefficient.
Since we already shifted right by #M, we still have to shift right by

()# # # #C I M x I+ − − = −15 2 30

Finally we have to adjust for the
1
2

factor of the coefficient that we didn’t consider in each pass. The

final right shift will be 2x#I-28.

A C model of the hardware was written and verified to comply with IEEE 1180-1990 for values of #I >
17 and #C > 12 which are the values used in the hardware implementation.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 303

CODED DATA INTERFACE

The Coded Data Interface is a programmable interface, responsible for conveying compressed data
streams to a designated MPE in the MMP system. Compressed data could be in the form of either audio
and/or video elementary streams or transport / program streams. The CDI presents a glue-less interface
to a number of commercial transport stream de-multiplexers, channel decoders and CD-DSPs.
Application layer video elementary stream data is carried over a byte-wide interface (most significant
byte first) that can be programmed as synchronous or asynchronous. Audio elementary stream data is
either multiplexed with video over the byte-wide interface, or carried over an independent bit-serial
interface (most significant byte/bit first). The bit-serial interface is also programmable as synchronous or
asynchronous. System level compressed data (transport streams and program streams) is carried over the
byte-wide interface.

The CDI IO is multiplexed to make better use of the Chip IO pins. The following table shows the CDI
interface pins to the external world and the different modes where they are used.

Pin Names I/O Program
Elem.
Stream
Video

Program
Elem.
Stream
Audio

Transport Stream Program Stream

CVDATA0/CAPDATA0 I √ √(Par. Aud) √ √
CVDATA1/CAPDATA1 I √ √(Par. Aud) √ √
CVDATA2/CAPDATA2 I √ √(Par. Aud) √ √
CVDATA3/CAPDATA3 I √ √(Par. Aud) √ √
CVDATA4/CAPDATA4 I √ √(Par. Aud) √ √
CVDATA5/CAPDATA5 I √ √(Par. Aud) √ √
CVDATA6/CAPDATA6 I √ √(Par. Aud) √ √
CVDATA7/CAPDATA7 I √ √(Par. Aud) √ √
CVREQ* O √ √
CVENAB/CVSTROBE* I √ √ √
CVCLK* I √ √ √
CAENAB/CASTROBE* I √
CASDATA/CVERRFLG* I √(Ser. Aud) √ √
CAREQ/CVTOP* I/O √(O) √(I) √(I)
CACLK* I √

*: Signal polarities (active edges in case of clocks) are programmable

Table 1: Coded Data Interface Pin Configuration

The following block diagram shows the main sections of the coded data interface

PAGE 304 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Comm
Bus

Control

IOCtrl

Align Mux

Align Mux

VIDEO

AUDIO

Video and TS PS section

Audio Section 32

32

88

8

32

32

32

The IOCtrl section of the CDI takes care of all the asynchronous clock domains and serial/parallel input
formats and provides an 8-bit synchronous external interface to the rest of the logic. The top section in
the above figure takes care of parallel video, and transport and program streams. The bottom section is
used for serial/parallel audio and top and error bits for PS and TS. The series of 8 flip-flops is used to
take care of the alignment commands coming from the MPE. The data is then arranged in 32-bit words
and load into the Communication Bus data holding registers for transmission to MPE1. The
Communication Bus message can contain a mixture of audio and video data on 32 bit boundaries. This
is achieved by loading the video data from the top down and the audio data from the bottom up. 8
special bits in the Communication Bus message will contain the necessary information for the receiver
to parse the incoming data correctly (see below).

Coded Data Interface Operation
The command and status information is exchanged between MPEs and CD Interface by the following
means:

• Communication Bus Transmit status field (8 bits): From an MPE to convey a command and from
the CD Interface to convey status. The transmit status bits from an MPE are received in the
Communication Bus Receive Status field of the CD Interface. Likewise, status information encoded
by the CD Interface in its Communication Bus Transmit Status field is received by the target MPE in
its Communication Bus Receive Status field.

8

8

128

128

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 305

• Communication Bus Transmit register: Certain Communication Bus Transmit field commands and
status bits are supplemented by information encoded in the most significant long word (MSLW)
portion of the Communication Bus Transmit register. In this implementation, this field is used to
transmit PS mode error information only.

Three types of commands are sent by the MPE to the CD Interface. First is the configuration command
which is invoked during initialization to configure the CD Interface (by writing the CDI_config
register). Associated with this command is a status query command that allows the MPE to read the
current configuration as programmed in the CDI_config register. The second type of command is used
by the MPE to force alignment of incoming data. In all modes of operation, alignment is carried out by
offsetting the initial position of the shift register write counter. The offset can take values 1, 2 or 3 to
force an effective right shift on incoming data, of 1, 2 or 3 bytes (Note: A value of ‘0’ in the align field
implies no alignment for the target stream). This allows incoming byte aligned data to be aligned on
long word boundaries. In this implementation, an additional restriction is placed on alignment in the
TS/PS modes of operation. This restriction allows alignment to be carried out only at the second
position of Communication Bus Transmit registers. The CD Interface responds to the alignment
command by carrying out the alignment, and returning a status code marking the first Communication
Bus data packet which contains aligned data. All future data transmitted by the CD Interface is
considered “normal” data, until the next MPE alignment command is processed. The third command is
used by the MPE to force a dump of the residual incoming bytes in a burst mode TS/PS stream. This
command is used in cases where PS packs arrive in bursts, followed by a few clocks of silence. The
receiving MPE has the option of sending a “flush” command during the silent period. This command
forces a Communication Bus cycle that carries the residual bytes left in the CD Interface shift and
holding registers.

The information exchanged between MPEs and CD Interface in different operating modes is described
below:

CD Interface General Configuration
Following commands and status information are exchanged between MPEs and CD Interface during CD
Interface configuration:

Source Description TX Status MSLW Dest.
MPE Command to query CDI Configuration status 1000 0000 <NONE> CDI
CDI Response to requesting MPE <1000 0000>

command
1000 0000 CDI_config reg. MPE

MPE Command to program CDI_config register 1001 0000 CDI_config info. CDI
MPE Command to flush CDI data (PS/TS only) 1110 0000 <NONE> CDI

cdiConfig CDI Configuration
This register may be read from and written to as shown above.

Bit Name Description
30 toshCDMode select logic to fix weird Toshiba CD handling of error stuff
29 i2sModeEn enable i2s mode
28 cdiNoAReq squash the audio request line
27 cdiNoVReq squash the video request line
26 stopCmbBus prevents comm bus from sending unsolicited data

PAGE 306 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

25 polAReqClk polarity control signal for output synchronous audio request line
24 polVReqClk polarity control signal for output synchronous video request line
23 parallVideo indicates parallel/serial video
22 parallAudio indicates parallel/serial audio
21 syncAudio indicates sync/async audio
20 syncVideo indicates sync/async video
19 polAClk audio clock polarity control (use rising edge if asserted)
18 polTop polarity for the top bit
17 polSDataErr error polarity control signal
16 polAEnaStrb polarity control for caEna_Strb
15 polAReq audio request polarity control
14 polVClk video clock polarity control (use rising edge if asserted)
13 polVEnaStrb polarity control for cvEna_Strb
12 polVReq video request polarity control
11-5 cmbDest 6 bit comm bus destination
4-2 streamType indicates stream type as follows:

000, 011, 100: reserved
001: PS program stream
010: TS transport stream
101: PES video only enabled
110: PES audio only enabled
111: PES audio and video enabled

1 cdiEnable enable cdi after reset (resettable config bit)
0 softReset soft reset signal

PES operating mode
Following command and status information is exchanged in the PES mode of operation:

Source Description TX Status MSLW Dest.
CDI Normal mixed audio/video data transmission: 3

video long words, 1 audio long word
0100 0000 Data MPE

CDI Normal mixed audio/video data transmission: 1
video long word, 3 audio long words

0110 0000 Data MPE

CDI Normal mixed audio/video data transmission: 2
video long words, 2 audio long words

0010 0000 Data MPE

CDI Normal video only transmission 0001 0000 Data MPE
CDI Normal audio only transmission 0000 0000 Data MPE
MPE Command to long word align incoming video

data.
vv takes values 0, 1, 2, or 3
aa takes values 0, 1, 2, 3
Note: 00 is no align

110a a0vv <NONE> CDI

CDI Response to long word align command from
MPE: Used to mark the first transmission of
aligned data with the data in 3 video and 1 audio
long word format (whether alignment is of audio,
video or both is indicated by bits[3..2])
10vv is video only aligned

1100 10vv
1100 0100
1100 11vv

Data MPE

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 307

Source Description TX Status MSLW Dest.
0100 is audio only aligned
11vv is audio/video aligned
Note: vv takes values 0, 1 or 2 (top down)

CDI Response to long word align command from
MPE: Used to mark the first transmission of
aligned data with the data in 1 video and 3 audio
long word format (whether alignment is of audio,
video or both is indicated by bits[3..2])
1000 is video only aligned
01aa is audio only aligned
11aa is audio/video aligned
Note: aa takes values 0, 1 or 2 (bottom up)

1110 1000
1110 01aa
1110 11aa

Data MPE

CDI Response to long word align command from
MPE: Used to mark the first transmission of
aligned data with the data in 2 video and 2 audio
long word format (whether alignment is of audio,
video or both is indicated by bits[3..2])
10vx is video only align
01xa is audio only align
11av is audio/video align
vv takes values 0, 1; aa takes values 0, 1; v takes
values 0, 1; a takes values 0 {for MSLW3} or 1
{for MSLW2})

1010 10vx
1010 01xa
1010 11va

Data MPE

CDI Response to long word align command from
MPE: Used to mark the first transmission of
aligned data with the data in video only format
vv takes values 0, 1, 2 or 3

1001 10vv Data MPE

CDI Response to long word align command from
MPE: Used to mark the first transmission of
aligned data with the data in audio only format
aa takes values 0, 1, 2 or 3

1000 01aa Data MPE

PS operating mode
Following command and status information is exchanged in the PS mode of operation:

Source Description TX Status MSLW Dest.
CDI Normal data 0000 XXXX Data MPE
CDI Data with byte error(s). Next transmission

identifies the error byte positions
0001 XXXX Data MPE

CDI Data with top byte: Indicates start of a new pack
in the current transmission. This fact is
established by the assertion of the top byte signal
by the device upstream
nnnn is the location of top byte

0010 nnnn Data MPE

CDI Data with top byte and error(s): Indicates start of
new pack with error(s) in current and/or new
pack. Next transmission identifies error byte
positions

0011 nnnn Data MPE

PAGE 308 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Source Description TX Status MSLW Dest.
nnnn is the location of top byte

MPE Command to long word align incoming data
xx takes values 00,01,10,11

1100 00xx <NONE> CDI

MPE “Flush” command from MPE to force a
Communication Bus transaction containing the
residual bytes at the end of a PS pack

1110 0000 <NONE> CDI

CDI Aligned data: Response to long word align
command from MPE. Used to mark the first
transmission of aligned data. Data always
aligned starting at MSLW position

0100 XXXX Data MPE

CDI Aligned data with error(s): Response to long
word align command from MPE. Used to mark
the first transmission of aligned data. Also
indicates that data has error(s). Next transmission
identifies error byte positions. Data always
aligned starting at MSLW position

0101 XXXX Data MPE

CDI Aligned data with top byte: Response to long
word align command from MPE. Used to mark
the first transmission of aligned data. Indicates
alignment was implemented at the tail end of a
pack. Data always aligned starting at MSLW
position
nnnn is the location of top byte

0110 nnnn Data MPE

CDI Aligned data with top byte and error(s):
Response to long word align command from
MPE. Used to mark the first transmission of
aligned data. Indicates alignment was
implemented at the tail end of a pack. Next
transmission identifies error byte positions. Data
always aligned starting at MSLW position
nnnn is the location of top byte

0111 nnnn Data MPE

CDI Sequel to 0001 0000 status indicating
position(s) of byte error(s)

1001 0000 CDI_status
(16 bit field
identifies error byte
positions)

MPE

CDI Sequel to 0011 nnnn status indicating error byte
positions

1011 0000 CDI_status
(16 bit field
identifies error byte
positions)

MPE

CDI Sequel to 0101 0000 status indicating
position(s) of byte error(s)

1101 0000 CDI_status
(16 bit field
identifies error byte
positions)

MPE

CDI Sequel to 0111 nnnn status indicating error byte
positions

1111 0000 CDI_status
(16 bit field
identifies error byte
positions)

MPE

CDI Response to “Flush” command from MPE.
Communication Bus registers carry residual bytes
at the end of a PS pack. Command and response
executed during silence between pack bursts

1110 0000 Data MPE

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 309

TS operating mode
This mode of operation is very similar to the PS mode except in the following ways. Instead of isolated
error bytes, the entire transport packet is marked as bad. Consequently, error related status transmission
needs only be made at the transition points between good and trashed transport packets. Also, a top byte
signal may not always be present to mark the start of a new transport packet.

Following command and status information is exchanged in the TS mode of operation:

Source Description TX Status MSLW Dest
CDI Normal data: A previous error packet code

<0001 0000> is terminated at the first shift-in of
good data. In this case, auxiliary field (bits[3..0])
points to start of good packet
0000 good pkt -> good pkt
nnnn location of error pkt -> good pkt

0000 0000
0000 nnnn

Data MPE

CDI Error packet data: A previous good packet code
<0000 0000> is terminated at the first shift-in of
error packet data. In this case, auxiliary field
(bits[3..0]) points to start of error packet
0000 error pkt -> error pkt
nnnn location of good pkt -> error pkt

0001 0000
0001 nnnn

Data MPE

CDI Data with top byte: Indicates start of a new
packet in the current transmission. This fact is
established by the assertion of the top byte signal
by the device upstream. A previous error packet
code <0001 0000> is terminated at the first shift-
in of good data. Auxiliary field (bits[3..0])
points to start of new packet
nnnn location of new packet

0010 nnnn Data MPE

CDI Data with top byte and error: Indicates start of an
error packet. Auxiliary field (bits[3..0]) points to
start of new error packet
nnnn location of new packet

0011 nnnn Data MPE

MPE Command to long word align incoming data
xx takes values 00,01,10,11

1100 00xx <NONE> CDI

MPE “Flush” command from MPE to force a
Communication Bus transaction containing the
residual bytes at the end of a TS packet

1110 0000 <NONE> CDI

CDI Aligned data: Response to long word align
command from MPE. Used to mark the first
transmission of aligned data. If previous code
was <0000 0000> then this code signifies
alignment of a good data packet. If previous
code was <0001 0000> then this code identifies
alignment of the tail end of the previous error
packet, followed by the current good packet. In
this case, auxiliary field (bits[3..0]) points to start
of good packet. Data always aligned starting at
MSLW position

0100 0000
0100 nnnn

Data MPE

PAGE 310 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Source Description TX Status MSLW Dest
0000 good pkt aligned
nnnn location of error pkt -> good pkt

CDI Aligned data with error: Response to long word
align command from MPE. Used to mark the
first transmission of aligned data. If previous
code was <0001 0000> then this code signifies
alignment of error packet. If previous code was
<0000 0000> then this code identifies alignment
of the tail end of the previous packet with the
current packet being trashed. In this case,
auxiliary field (bits[3..0]) points to start of error
packet. Data always aligned starting at MSLW
position
0000 error pkt aligned
nnnn location of good pkt -> error pkt

0101 0000
0101 nnnn

Data MPE

CDI Aligned data with top byte: Response to long
word align command from MPE. Used to mark
the first transmission of aligned data. This code
identifies alignment of the tail end of the
previous packet. Data always aligned starting at
MSLW position
nnnn top byte position

0110 nnnn Data MPE

CDI Aligned data with top byte and error: Response
to long word align command from MPE. Used
to mark the first transmission of aligned data.
This code identifies alignment of the tail end of
the previous packet with the current packet being
trashed. Data always aligned starting at MSLW
position
nnnn top byte position

0111 nnnn Data MPE

CDI Response to “Flush” command from MPE.
Communication Bus registers carry residual
bytes at the end of a TS packet. Command and
response executed during silence between packet
bursts

1110 0000 Data MPE

Coded Data Interface timing
The Coded Data Interface is designed to satisfy transport stream interface timing requirements outlined
in the DAVIC 1.1 A0 Specification. This allows the interface to handle sustained bit rates of up to 72
Mbits/s. For program streams and video/audio elementary streams, request-enable type of handshaking
allows data to be input in bursts of up to 16 bytes at a time. The interface is capable of handling CACLK
and CVCLK rates of up to 25 MHz. The relationships between different signals in different operating
modes are shown in Figure 9-Figure 15.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 311

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

CACLK

CSADATA

CAENAB

CAREQ

Figure 9: Synchronous Serial Audio mode of Coded Data Interface

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0CSADATA

CASTROBE

CAREQ

Figure 10: Asynchronous Serial Audio mode of Coded Data Interface

1 to 3 additional bytes can be received
after CVREQ deassertion

CVCLK

CVDATA[7..0] MS Byte

CVENAB

CVREQ

Figure 11: Synchronous Video mode of Coded Data Interface

1 to 3 additional bytes can be received
after CVREQ deassertion

CVDATA[7..0] MS Byte

CVSTROBE

CVREQ

Figure 12: Asynchronous Video mode of Coded Data Interface

PAGE 312 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

1 to 3 additional bytes can be received
after CVREQ/CAREQ deassertion

CVCLK

CVDATA[7..0] Vid Byte

CVENAB

CAENAB

Vid Byte Aud Byte Vid Byte

CVREQ

Vid Byte Aud Byte

CAREQ

Figure 13: Synchronous multiplexed Parallel Video/Audio mode of Coded Data Interface

1 to 3 additional bytes can be received
after CVREQ/CAREQ deassertion

CVDATA[7..0] Vid Byte

CVSTROBE

CASTROBE

Vid Byte Aud Byte Vid Byte

CVREQ

Vid Byte Aud Byte

CAREQ

Figure 14: Asynchronous multiplexed Parallel Video/Audio mode of Coded Data Interface

CVCLK

CVDATA[7..0] MS Byte

CVENAB

CVERRFLG
(TS mode)

One PS Pack (2048 bytes)
or

one TS Packet (188 bytes)

Error Byte
(PS mode)

CVERRFLG
(PS mode)

CVTOP
(TS/PS modes)

Figure 15: Transport Stream/Program Stream modes of Coded Data Interface

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 313

CDI Configuration register

Bit Name Description
0 SoftReset Soft reset CDI
1 CdiEnable Enable cdi for operation
4:2 StreamType 001: PS,

010: TS,
101: PES video,
110: PES audio,
111: PES audio an video

11:5 CmbDest Communication
Busdestination ID

12 PolVReq Polarity video request
13 PolVEnaStrb Polarity video enable
14 PolVClk Polarity video clock
15 PolAReq Polarity audio request
16 PolAEnaStrb Polarity audio enable
17 PolSDataErr Polarity serial data/error
18 PolTop Polarity top bit
19 PolAClk Polarity audio clock
20 SyncVideo Synchronous video
21 SyncAudio Synchronous audio
22 ParallAudio Parallel audio
23 ParallVideo Parallel video
24 PolVReqClk Polarity video request edge
25 PolAReqClk Polarity audio request edge
26 StopCmbBus Disable Communication Bus
27 CdiNoVReq Squash cvReq
28 CdiNoAReq Squash caReq
29 i2sModeEn Enable I2S mode
30 toshCDMode Special stuff for tosh.

Subcode/error in CD mode

Notes:

• In I2S mode, the interface is parallel synchronous, with top and error bits, ALL active high.

• A ‘1’ in polarity control bit means rising edge or active high on clocks. On strobes, a ‘1’ means
falling edge is the capture edge.

• Error register: This 3-bit register is read together with the cdi configuration information :
- 001 video overflow (and PS/TS)

- 010 audio overflow

- 100 bad receive Communication Bus info

• When using an asynchronous setup, make sure that the clock pins cvclk and/or caclk are tied high, to
avoid spurious clocks when configuring

PAGE 314 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

CSS Section:
Startup procedure:

Operation SW HW
1. Disc Insertion
2. Get Lead-in Sector Information Read single sector

sector # 02FD02 (rdSector)
Wait for specified sector send to cdi

3. Extract disk reference key and
vmlabs disk key

Process Data From Lead-In Sector

4 Calculate intermediate master
key A

Select master key A and issue
gIMK command

Run LFSR with MKA and write
IMKA 40 bits to register

5. Calculate disk key A and write
back to hardware

Read register command (IMKA)
Write keyInReg register command
with disk key A

6. Calculate intermediate disk key
A

Get intermediate master disk key
command (gIMDK)

Run LFSR with DKA and write
IDKA 40 bits to register

7. Calculate disk key A’
and compare to DKA if match then
skip to 12

Read register command (IDKA)

8 Calculate intermediate master
key B

Select master key B and issue
gIMK command

Run LFSR with MKB and write
IMKB 40 bits to register

9. Calculate disk key B and write
back to hardware

Read register command (IMKB)
Write keyInReg register command
with disk key B.

10. Calculate intermediate disk key
B

Get intermediate master disk key
command (gIMDK)

Run LFSR with DKB and write
IDKB 40 bits to register

11. Calculate disk key B’ and
compare to DKB. If no match =>
error

Read register command (IDKB)

12. Get encrypted title key from
disk

Select header bit and read sector
command (rdSector)

Get sector containing encrypted title
key,

13. Extract encrypted title key Extract encrypted title key
14. Calculate intermediate disk key Write keyInReg register command

with disk key

15. Calculate intermediate disk key Get intermediate disk key
command (gIDK)

Run LFSR with DK and write IDK
40 bits register

16. Calculate title key Read register command (IDK)
Write keyInReg register command
with title key

Store title key in safe place

17. Read Data Sectors… Read Sector (rdSector)

+ Wait for incoming sector data to
match sector number
+ Check scramble bit
+ Strip 12 byte headers off
+ Send descrambled data to FIFO or
CDI

CDI IO Registers
IO registers are written through the Communication Bus setting Communication Bus info to:
1010_0000. The first 32 bits contain the right aligned address of the register with bit 31 indicating
read(0) or write(1). The second 32 bits contain the right aligned write data (24 bits max). In case of a

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 315

read the cdi will return data to the requester through the Communication Bus on the first 32 bits (right
aligned).

Address Register Description Default
0000 SctID 24 bit sector id XXX
0001 KeyInRegL *1 24 LSB of key register XXX
0010 KeyInRegH *1 16 MSB of key register XX
0011 CmdReg Command register (see below) HALT
0100 CtrlReg Control register (see below) 5’b11001
0101 Status Status register (read only, see below) 2’b00
0110 KeyOutRegL 24 LSB of key register (read only) XXX
0111 KeyOutRegH 16 MSB of key register (read only) XX
1000 PostFilter *1 bytes after payload (0-7) (2060-2067) 000
1001 FifoFullMargin When to indicate full fifo (0-4) 100

*1: No writes allowed in VMMode (softReset allowed, it resets to 0)

The FifoFullMargin register indicates how many empty bytes must be left in the FIFO before
indicating FIFO full and deasserting the request line. This is important because it affects the input
bandwidth available. In most cases 2 would be plenty since the source of data will send at the most 1
extra byte when the request line is deasserted. It must also be considered that there is at least 1 tick from
the detection of the full condition and the deassertion of the request line, so another byte could sneak in.
‘0’ means there are no empty slots when full is indicated, and ‘1’ means there is 1 empty slot when full
is indicated, etc.

Commands
The Command register is a 4-bit register at address 0x8 that holds the current command. The current
commands are:

Code Name Description
0000 NOP no operation
0001 HALT stop gathering of data (state machines back to IDLE)
0010 rdSector read sector (options: continuous, header)
0011 reserved
0100 gITDK get intermediate title disk key
0101 gIMDK get intermediate master disk key
0110 gIMK get intermediate master key (options: A or B)
0111 reserved

The non-continuous rdSector command (read 1 sector) has the problem of leaving data in the pipe
because nobody is ‘pushing’ behind it. The Comm-Bus will send only multiples of 16 packets.
Therefore, to avoid this problem, the read 1 sector command will require a 4 byte postfilter to get
complete data (no align commands allowed of course)

The 40 bits of reply to some of the above commands will come in bits {(47:32),(23:0)}

Control Register:

PAGE 316 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Bit Name Description Defaul
t

0 CssSoftReset soft reset for CSS only 1
1 CssBypass *1 bypass css logic 1
2 Continuous continuous read 0
3 SectFilterOff turn sector filter off 1
4 MasterA choose masterkey A 1
5 DescrOff *1 force no descrambling of scrambled

sectors
0

6 VMMode *2 vmlabs descramble mode 0
7 Kill12 *1 kill first 12 bytes of each sector. 0

*1: No writes allowed in VMMode, no softReset

*2: can be written to, only once, no softReset

Status register
Bit Name Description
0 fifoOvfl Fifo overflow
1 fifoUnfl Fifo underflow
7-2 reserved Available bits

Communication Bus info byte, for writes and reads : 1010_0000

reply will be: 1000_0000

Performance
Through CSS with LFSR involvement, the maximum data rate possible is 54 Mbits/second or 6.75
MBytes/second. Otherwise it is 36MBytes/second.

When data is passed from the audio in I2S inputs, it is parallel sync at 27 MHz in bursts of four,
therefore it can at the most be 4 bytes every 13 bytes (4 bytes + 9 idle cycles).

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 317

MOTION COMPENSATION UNIT

The Motion Compensation Unit (MCU) performs the motion compensation operation for the MPEG
decode specific hardware and is closely linked with the DMA controller. The design is implemented
around four 48x40 banks of memory. In normal MPEG operations, these memory banks are written
directly with the IDCT data coming out of the BDU. They can also be read and written through
Communication Bus operations to allow calculated IDCT data to be written directly into the MCU or to
enable the use of the memory banks as scratch space (32-bit wide only).

Another function of the MCU is for hardware semaphores. When not decoding MPEG, the 8 LSBs of
every location in the internal banks (192) can be used as a hardware semaphore (is that enough for
you?). When decoding MPEG, there are additional 8 bits that can be accessed as hardware semaphores
as shown below.

Finally, the MCU memory can also be used as scratch memory space.

The MCU is controlled by an interface available through the DMA controller’s Communication Bus
interface, and by some MCU specific DMA commands. MCU commands are 32 bits wide and are sent
with a normal Communication Bus packet through the DMA unit. The DMA unit will identify the
command for the MCU and forward it. Up to four MCU commands can be sent in a single
Communication Bus message. If the MCU replies with some data, the DMA will send a Communication
Bus packet to the original requester with the 32 reply bits and the 3 32-bit words of garbage.

MCU Communication Bus Interface
This interface is available through the DMA controller’s Communication Bus interface. Refer to that
section for further details.

mcuTS Test and set semaphore (memory)
Tests the state of one or more semaphore bits, returns their state, and sets them, as determined by
the mask. The return Communication Bus packet has the 8 status bits, in the 8 LSB positions of
the first 32-bit word of the Communication Bus packet.

Bit Name Description
31-25 Header 1 111 000
23-16 Adx Memory address
7-0 mask Select which of the 8 semaphores to operate on

mcuTC Test and clear semaphore (memory)
Tests the state of one or more semaphore bits, returns their state, and clears them, as determined
by the mask. The return Communication Bus packet has the 8 status bits, in the 8 LSB positions
of the first 32-bit word of the Communication Bus packet.

Bit Name Description
31-25 Header 1 111 001
23-16 Adx Memory address
7-0 mask Select which of the 8 semaphores to operate on

PAGE 318 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

wrtDCT Write a DCT value
Writes a DCT value sequentially into MCU RAM. The MCU Ram will be filled in raster scan
order, i.e. the dataL of the first dct write will be the DC term of the block and the dataH will be
the AC term to the right of it. The next write dct MUST contain the next two dct values to the
right, since four values are written to the RAM at a time.

When the last dct values are written for that block the MCU will generate a dct done interrupt.

Bit Name Description
31-25 Header 0 111 100
24-16 dataL DCT value (low)
15 dctType 0 = frame, 1 = field
14 newBlock Indicates new block start. Set with first dct pair of each block only
13-11 blockNum Indicates which block number (0 to 5)
10 newMBlock Indicates new Mblock. Set only with the first two samples of the macro-block.
9 reserved write 0
8-0 dataH DCT value (high)

wrtAdxDh Write to MCU RAM
Writes a value into MCU RAM. This forms a pair with the next command to write an entire 32-
bit location. This command must precede wrAdxDl since the actual write operation occurs
during wrAdxDl. These 16 bits are the high bits of the 32-bit word.

If the testMode bit is set (see mcuTSreg), this command doesn’t do much, but it still needs to be
executed right before wrAdxDl to set the address in the hardware. In normal mode, bits 39, 30,29
20,19, 10, 9, 0 of each entry of each RAM are not tested. When test mode is set, these bits are
treated as a byte and are accessible from Communication Bus.

Bit Name Description
31-25 Header 0 111 101
23-16 Adx Memory address (0-191 decimal)
15-0 dataH 16 bits of data

wrAdxDl Write to MCU RAM
Writes a value into MCU RAM. This forms a pair with the previous command to write an entire
32-bit location. This command must follow wrtAdxDh since the actual write operation happens
during this command These 16 bits are the low bits of the 32-bit word.

If the testMode bit is set (see mcuTSreg), this command will write the 8 bits (of the MCU RAM)
that are not accessed in non-test mode.

Bit Name Description
31-25 Header 0 111 110
23-16 Adx Memory address (0-191 decimal)
15-0 dataL 16 bits of data

rdAdx Read from MCU RAM
Reads a 32-bit value from MCU RAM. The data will be returned as the first 32 data bits in the
reply Communication Bus message.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 319

Bit Name Description
31-25 Header 1 111 111
23-16 Adx Memory address (0-191 decimal)
15-0 reserved write 0

mcuTSreg Test and set semaphore register
Tests the state of one or more semaphore register bits, returns their state, and sets them, as
determined by the mask. This register contains the 8 semaphores always available (even if the
MPEG engine is running). The return Communication Bus packet has the 8 status bits, in the 8
LSB positions of the first 32-bit word of the Communication Bus message.

If Bit 8 is set, it will put the MCU Ram in a mode (testMode) where the bits that are not
accessible through the above MCU read and write commands are accessible. There will be a
return packet in this case too.

Bit Name Description
31-25 Header 1 111 010
8 Test Enables extra RAM data in test mode if set, should be zero for normal operation
7-0 mask Select which of the 8 semaphores to operate on

mcuTCreg Test and clear semaphore register
Tests the state of one or more semaphore register bits, returns their state, and clears them, as
determined by the mask. This register contains the 8 semaphores always available (even if the
MPEG engine is running). The return Communication Bus packet has the 8 status bits, in the 8
LSB positions of the first 32-bit word of the Communication Bus message.

If Bit 8 is set, it will take the MCU Ram back into normal operation (default). There will be a
return packet in this case too.

Bit Name Description
31-25 Header 1 111 011
8 Test Disables extra RAM data in test mode (if set, 0 for normal op)
7-0 mask Select which of the 8 semaphores to operate on

PAGE 320 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ARIES 3 ELECTRICAL SPECIFICATIONS

Aries 3 Package Options
Aries 3 is available in the following package options:
ARIES30-BA3 256 pin BGA For new Aries 3 specific board designs.
ARIES30-BA2 256 pin BGA For Aries 2 drop-in replacement.
ARIES30-QA2 208 pin PQFP For new Aries 3 specific board designs.

The sections below discuss the details of these.

Qualification levels
Aries 3 parts will be available in three qualification levels, according to the qualification status when
they are manufactured:
-ES Engineering Samples
-XC Conditional Qualification
-VC Fully qualified.

Part Numbering
The part numbering is a combination of the package option, followed by the qualification level. For
example: ARIES30-BA2-ES is an Aries 2 drop-in replacement part qualified as an engineering sample.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 321

Aries 3 Pinout - QFP-208 Package

QFP-208 Package
Detailed package drawings are available from VM Labs.

Pin pitch: 0.50mm.

Package dimension: 28mm X 28mm.

 208 207 206 . . . 159 158 157
1 156
2 155
3 154
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
50 107
51 106
52 105
 53 54 55 . . . 102 103 104

QFP-208 Pinout Ordered by Pin Number
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
1 X_pll1_avss 53 GND_18 105 X_sysa_19 157 GND_18
2 X_pll1_avdd 54 VDD_18 106 X_sysa_20 158 VDD_18
3 X_pll1_dvss 55 X_hsync 107 X_sysa_21 159 X_sd_a_3
4 X_pll1_dvdd 56 X_sysd_0 108 X_sysa_22 160 X_sd_a_4
5 GND_33 57 X_sysd_1 109 X_sysdramcs 161 X_sd_a_2
6 X_pll_clki 58 X_sysd_2 110 X_sysrw 162 X_sd_a_5
7 VDD_33 59 X_sysd_3 111 X_syscas 163 X_sd_a_1
8 X_rom_cs_b 60 X_sysd_4 112 X_sysbg 164 X_sd_a_6
9 X_gpio_0 61 X_sysd_5 113 GND_33 165 X_sd_a_0
10 X_gpio_1 62 GND_33 114 VDD_33 166 GND_33
11 X_gpio_2 63 VDD_33 115 X_sysbb 167 VDD_33
12 X_gpio_3 64 X_sysd_6 116 X_sysgpcs0 168 X_sd_a_7
13 GND_18 65 X_sysd_7 117 X_syscs 169 X_sd_a_10
14 VDD_18 66 X_sysd_8 118 GND_18 170 X_sd_a_8
15 X_gpio_4 67 X_sysd_9 119 X_sysbclk 171 X_sd_a_12
16 X_gpio_5 68 X_sysd_10 120 VDD_18 172 X_sd_a_9
17 X_gpio_6 69 X_sysd_11 121 X_sysoe 173 X_sd_a_13

PAGE 322 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
18 X_gpio_7 70 X_sysd_12 122 X_ai_data 174 X_sd_a_11
19 X_gpio_8 71 GND_33 123 X_ai_bclk 175 X_sd_cs_b_0
20 X_gpio_9 72 VDD_33 124 X_ai_wclk 176 GND_33
21 X_gpio_10 73 X_sysd_13 125 X_cvdata_0 177 VDD_33
22 X_gpio_11 74 X_sysd_14 126 X_cvdata_1 178 X_sd_a_14
23 X_gpio_12 75 X_sysd_15 127 X_cvdata_2 179 X_sd_ras_b
24 X_gpio_13 76 X_sysgpcs1 128 X_cvdata_3 180 X_sd_cas_b
25 X_gpio_14 77 X_syswe 129 X_cvdata_4 181 GND_18
26 X_gpio_15 78 GND_18 130 GND_18 182 X_sd_clk
27 GND_18 79 VDD_18 131 VDD_18 183 VDD_18
28 X_reseti_b 80 X_sysa_2 132 X_cvdata_5 184 X_sd_we_b
29 VDD_18 81 X_sysa_3 133 X_cvdata_6 185 X_sd_dqm_0
30 X_cp_ena_b 82 GND_33 134 X_cvdata_7 186 X_sd_dqm_1
31 X_cp_clk 83 VDD_33 135 X_cvreq 187 X_sd_dq_7
32 GND_33 84 X_sysa_4 136 X_cvenab 188 GND_33
33 VDD_33 85 X_sysa_5 137 X_cvclk 189 VDD_33
34 X_cp_dout1 86 X_sysa_6 138 X_caenab 190 X_sd_dq_8
35 X_cp_dout2 87 X_sysa_7 139 X_casdata 191 X_sd_dq_6
36 X_cp_din1 88 X_sysa_8 140 X_careq 192 X_sd_dq_9
37 X_cp_din2 89 X_sysa_9 141 X_caclk 193 X_sd_dq_5
38 X_test 90 X_sysa_10 142 GND_18 194 X_sd_dq_10
39 GND_18 91 GND_33 143 X_aclk 195 X_sd_dq_4
40 VDD_18 92 VDD_33 144 VDD_18 196 X_sd_dq_11
41 X_vdata_0 93 X_sysa_11 145 X_sbclk 197 X_sd_dq_3
42 X_vdata_1 94 X_sysa_12 146 X_sdat_0 198 GND_33
43 X_vdata_2 95 X_sysa_13 147 X_swclk 199 VDD_33
44 X_vdata_3 96 X_sysa_14 148 X_sdat_2 200 X_sd_dq_12
45 X_vdata_4 97 X_sysa_15 149 X_sdat_1 201 X_sd_dq_2
46 X_vdata_5 98 X_sysa_16 150 X_spdif 202 X_sd_dq_13
47 X_vdata_6 99 X_sysa_17 151 VDD_33 203 X_sd_dq_1
48 X_vdata_7 100 VDD_33 152 GND_33 204 X_sd_dq_14
49 GND_33 101 GND_33 153 X_pll2_dvdd 205 X_sd_dq_0
50 X_vclk 102 X_sysa_18 154 X_pll2_dvss 206 X_sd_dq_15
51 VDD_33 103 VDD_18 155 X_pll2_avdd 207 VDD_18
52 X_field 104 GND_18 156 X_pll2_avss 208 GND_18

QFP-208 Pinout Ordered by Signal Name
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
13 GND_18 143 X_aclk 28 X_reseti_b 88 X_sysa_8
27 GND_18 123 X_ai_bclk 8 X_rom_cs_b 89 X_sysa_9
39 GND_18 122 X_ai_data 145 X_sbclk 90 X_sysa_10
53 GND_18 124 X_ai_wclk 165 X_sd_a_0 93 X_sysa_11
78 GND_18 141 X_caclk 163 X_sd_a_1 94 X_sysa_12
104 GND_18 138 X_caenab 161 X_sd_a_2 95 X_sysa_13
118 GND_18 140 X_careq 159 X_sd_a_3 96 X_sysa_14
130 GND_18 139 X_casdata 160 X_sd_a_4 97 X_sysa_15
142 GND_18 31 X_cp_clk 162 X_sd_a_5 98 X_sysa_16

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 323

Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
157 GND_18 36 X_cp_din1 164 X_sd_a_6 99 X_sysa_17
181 GND_18 37 X_cp_din2 168 X_sd_a_7 102 X_sysa_18
208 GND_18 34 X_cp_dout1 170 X_sd_a_8 105 X_sysa_19
5 GND_33 35 X_cp_dout2 172 X_sd_a_9 106 X_sysa_20
32 GND_33 30 X_cp_ena_b 169 X_sd_a_10 107 X_sysa_21
49 GND_33 137 X_cvclk 174 X_sd_a_11 108 X_sysa_22
62 GND_33 125 X_cvdata_0 171 X_sd_a_12 115 X_sysbb
71 GND_33 126 X_cvdata_1 173 X_sd_a_13 119 X_sysbclk
82 GND_33 127 X_cvdata_2 178 X_sd_a_14 112 X_sysbg
91 GND_33 128 X_cvdata_3 180 X_sd_cas_b 111 X_syscas
101 GND_33 129 X_cvdata_4 182 X_sd_clk 117 X_syscs
113 GND_33 132 X_cvdata_5 175 X_sd_cs_b_0 56 X_sysd_0
152 GND_33 133 X_cvdata_6 205 X_sd_dq_0 57 X_sysd_1
166 GND_33 134 X_cvdata_7 203 X_sd_dq_1 58 X_sysd_2
176 GND_33 136 X_cvenab 201 X_sd_dq_2 59 X_sysd_3
188 GND_33 135 X_cvreq 197 X_sd_dq_3 60 X_sysd_4
198 GND_33 52 X_field 195 X_sd_dq_4 61 X_sysd_5
14 VDD_18 9 X_gpio_0 193 X_sd_dq_5 64 X_sysd_6
29 VDD_18 10 X_gpio_1 191 X_sd_dq_6 65 X_sysd_7
40 VDD_18 11 X_gpio_2 187 X_sd_dq_7 66 X_sysd_8
54 VDD_18 12 X_gpio_3 190 X_sd_dq_8 67 X_sysd_9
79 VDD_18 15 X_gpio_4 192 X_sd_dq_9 68 X_sysd_10
103 VDD_18 16 X_gpio_5 194 X_sd_dq_10 69 X_sysd_11
120 VDD_18 17 X_gpio_6 196 X_sd_dq_11 70 X_sysd_12
131 VDD_18 18 X_gpio_7 200 X_sd_dq_12 73 X_sysd_13
144 VDD_18 19 X_gpio_8 202 X_sd_dq_13 74 X_sysd_14
158 VDD_18 20 X_gpio_9 204 X_sd_dq_14 75 X_sysd_15
183 VDD_18 21 X_gpio_10 206 X_sd_dq_15 109 X_sysdramcs
207 VDD_18 22 X_gpio_11 185 X_sd_dqm_0 116 X_sysgpcs0
7 VDD_33 23 X_gpio_12 186 X_sd_dqm_1 76 X_sysgpcs1
33 VDD_33 24 X_gpio_13 179 X_sd_ras_b 121 X_sysoe
51 VDD_33 25 X_gpio_14 184 X_sd_we_b 110 X_sysrw
63 VDD_33 26 X_gpio_15 146 X_sdat_0 77 X_syswe
72 VDD_33 55 X_hsync 149 X_sdat_1 38 X_test
83 VDD_33 6 X_pll_clki 148 X_sdat_2 50 X_vclk
92 VDD_33 2 X_pll1_avdd 150 X_spdif 41 X_vdata_0
100 VDD_33 1 X_pll1_avss 147 X_swclk 42 X_vdata_1
114 VDD_33 4 X_pll1_dvdd 80 X_sysa_2 43 X_vdata_2
151 VDD_33 3 X_pll1_dvss 81 X_sysa_3 44 X_vdata_3
167 VDD_33 155 X_pll2_avdd 84 X_sysa_4 45 X_vdata_4
177 VDD_33 156 X_pll2_avss 85 X_sysa_5 46 X_vdata_5
189 VDD_33 153 X_pll2_dvdd 86 X_sysa_6 47 X_vdata_6
199 VDD_33 154 X_pll2_dvss 87 X_sysa_7 48 X_vdata_7

PAGE 324 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Aries 3 Pinout - BGA-256 Package

BGA-256 Package
Detailed package drawings are available from VM Labs.

Ball pitch: 1.27mm.

Package dimension: 27mm X 27mm.

Variation between ARIES30-BA2 and ARIES30-BA3 Packages
Aries 3 is available in two BGA package options. ARIES30-BA2 is intended to be a drop-in
replacement for Aries 2, and ARIES30-BA3 is intended for new designs. The pinout tables below
describe the ARIES30-BA3 variant. The following balls are all no connects on the ARIES30-BA2
variant:

Ball Signal Name Comment
J3 X_pll1_avss Bonded to internal ground ring.
H1 X_pll1_avdd Bonded to internal 1.8V power ring.
L2 X_pll1_dvss Bonded to internal ground ring.
J1 X_pll1_dvdd Bonded to internal 1.8V power ring.
H18 X_pll2_dvdd Bonded to internal 1.8V power ring.
D19 X_pll2_dvss Bonded to internal ground ring.
J17 X_pll2_avdd Bonded to internal 1.8V power ring.
H20 X_pll2_avss Bonded to internal ground ring.
B12 X_sd_a_14 Not used – this is only required for SDRAM larger than 64 Mbit. On Aries 2 this is

used for X_sd_clk_in, which is no longer required.

BGA-256 Pinout Ordered by Ball Designator
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
A1 GND D5 VDD_33 L1 X_cp_ena_b U17 GND
A2 X_sd_dq_0 D6 VDD_18 L2 X_pll1_dvss U18 X_sysa_14
A3 X_sd_dq_1 D7 VDD_33 L3 X_pll_ref U19 X_sysa_13
A4 X_sd_dq_2 D8 GND L4 X_gpio_16 U20 X_sysa_16
A5 X_sd_dq_3 D9 X_gpio_24 L17 VDD_18 V1 X_reseti_b
A6 X_sd_dq_4 D10 VDD_33 L18 X_sysoe V2 X_cp_dout2
A7 X_sd_dq_5 D11 VDD_18 L19 X_sysbclk V3 X_cp_din2
A8 X_sd_dq_6 D12 X_gpio_18 L20 X_sys_rdy_b V4 X_vdata_3
A9 X_sd_dq_7 D13 GND M1 X_vid_6 V5 X_vdata_7
A10 X_sd_dqm_0 D14 X_sdat_2 M2 X_vid_7 V6 X_hsync
A11 X_sd_we_b D15 VDD_18 M3 X_gpio_0 V7 X_sysd_2
A12 X_sd_cas_b D16 X_gpio_17 M4 X_gpio_1 V8 X_sysd_5
A13 X_sd_ras_b D17 GND M17 X_sysbg V9 X_sysd_9
A14 X_sd_cs_b_0 D18 VDD_33 M18 X_sysbb V10 X_sysd_12
A15 X_sd_a_11 D19 X_pll2_dvss M19 X_sysgpcs0 V11 X_sysd_16
A16 X_sd_a_10 D20 X_careq M20 X_syscs V12 X_sysd_20
A17 X_sd_a_0 E1 X_rom_lat_0 N1 X_gpio_2 V13 VDD_33
A18 X_sd_a_1 E2 X_rom_d_7 N2 X_gpio_3 V14 X_sysd_27
A19 X_sd_a_2 E3 X_rom_d_6 N3 X_gpio_4 V15 X_sysd_31

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 325

Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
A20 X_sd_a_3 E4 X_rom_d_3 N4 GND V16 X_sysa_2
B1 X_sd_dq_15 E17 X_caclk N17 GND V17 X_sysa_5
B2 X_sd_dq_14 E18 VDD_33 N18 X_syscas V18 X_sysa_8
B3 X_sd_dq_13 E19 X_casdata N19 VDD_33 V19 X_sysa_12
B4 X_sd_dq_12 E20 X_cvenab N20 X_sysbr V20 VDD_33
B5 X_sd_dq_11 F1 VDD_33 P1 X_gpio_5 W1 X_cp_din1
B6 X_sd_dq_10 F2 X_rom_cs_b P2 X_gpio_6 W2 X_test
B7 X_sd_dq_9 F3 X_rom_lat_1 P3 X_gpio_8 W3 X_vdata_1
B8 X_sd_dq_8 F4 VDD_18 P4 X_gpio_10 W4 X_vdata_2
B9 X_gpio_22 F17 VDD_18 P17 X_sysa_21 W5 X_vclk
B10 X_sd_dqm_1 F18 X_caenab P18 X_sysa_24 W6 X_sysd_0
B11 X_sd_clk F19 X_cvreq P19 X_sysdramcs W7 X_sysd_3
B12 X_sd_a_14 F20 X_cvdata_6 P20 X_sysrw W8 X_sysd_6
B13 X_sd_a_9 G1 X_viclk R1 X_gpio_7 W9 X_sysd_10
B14 X_sd_cs_b_1 G2 X_rom_oe_b R2 VDD_33 W10 VDD_33
B15 X_sd_a_8 G3 X_rom_we_b R3 X_gpio_11 W11 X_sysd_15
B16 X_sd_a_7 G4 X_rom_lat_2 R4 VDD_18 W12 X_sysd_19
B17 X_sd_a_6 G17 X_cvclk R17 VDD_18 W13 X_sysd_23
B18 X_sd_a_5 G18 X_cvdata_7 R18 X_sysa_20 W14 X_sysd_25
B19 X_sd_a_4 G19 X_cvdata_5 R19 X_sysa_22 W15 X_sysd_28
B20 X_sd_a_12 G20 X_cvdata_4 R20 X_sysa_23 W16 X_sysgpcs1
C1 X_rom_d_4 H1 X_pll1_avdd T1 X_gpio_9 W17 X_sysa_3
C2 X_rom_d_0 H2 X_vid_1 T2 X_gpio_12 W18 X_sysa_6
C3 VDD_33 H3 X_vid_0 T3 X_gpio_14 W19 X_sysa_9
C4 X_gpio_25 H4 GND T4 X_cp_clk W20 X_sysa_11
C5 VDD_33 H17 GND T17 X_sysa_15 Y1 X_vdata_0
C6 X_spdif H18 X_pll2_dvdd T18 X_sysa_17 Y2 VDD_33
C7 VDD_33 H19 X_aclk T19 X_sysa_18 Y3 X_vdata_5
C8 VDD_33 H20 X_pll2_avss T20 X_sysa_19 Y4 X_vdata_6
C9 X_gpio_23 J1 X_pll1_dvdd U1 X_gpio_13 Y5 X_field
C10 X_gpio_21 J2 X_pll_clki U2 X_gpio_15 Y6 X_sysd_1
C11 X_gpio_20 J3 X_pll1_avss U3 X_cp_dout1 Y7 X_sysd_4
C12 X_gpio_19 J4 X_vid_2 U4 GND Y8 X_sysd_7
C13 VDD_33 J17 X_pll2_avdd U5 X_vdata_4 Y9 X_sysd_11
C14 X_sdat_1 J18 X_cvdata_3 U6 VDD_18 Y10 X_sysd_13
C15 VDD_33 J19 X_cvdata_2 U7 VDD_33 Y11 X_sysd_14
C16 X_swclk J20 X_cvdata_1 U8 GND Y12 X_sysd_18
C17 VDD_33 K1 X_vid_5 U9 X_sysd_8 Y13 X_sysd_22
C18 X_sdat_0 K2 X_vid_3 U10 VDD_18 Y14 X_sysd_24
C19 X_sbclk K3 X_vid_4 U11 X_sysd_17 Y15 X_sysd_26
C20 X_sd_a_13 K4 VDD_18 U12 X_sysd_21 Y16 X_sysd_29
D1 X_rom_d_5 K17 X_cvdata_0 U13 GND Y17 X_syswe
D2 X_rom_d_1 K18 X_ai_wclk U14 X_sysd_30 Y18 VDD_33
D3 X_rom_d_2 K19 X_ai_bclk U15 VDD_18 Y19 X_sysa_7
D4 GND K20 X_ai_data U16 X_sysa_4 Y20 X_sysa_10

PAGE 326 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

BGA-256 Pinout Ordered by Signal Name
Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
A1 GND J18 X_cvdata_3 A20 X_sd_a_3 P18 X_sysa_24
D4 GND G20 X_cvdata_4 B19 X_sd_a_4 M18 X_sysbb
D8 GND G19 X_cvdata_5 B18 X_sd_a_5 L19 X_sysbclk
D13 GND F20 X_cvdata_6 B17 X_sd_a_6 M17 X_sysbg
D17 GND G18 X_cvdata_7 B16 X_sd_a_7 N20 X_sysbr
H4 GND E20 X_cvenab B15 X_sd_a_8 N18 X_syscas
H17 GND F19 X_cvreq B13 X_sd_a_9 M20 X_syscs
N4 GND Y5 X_field A16 X_sd_a_10 W6 X_sysd_0
N17 GND M3 X_gpio_0 A15 X_sd_a_11 Y6 X_sysd_1
U4 GND M4 X_gpio_1 B20 X_sd_a_12 V7 X_sysd_2
U8 GND N1 X_gpio_2 C20 X_sd_a_13 W7 X_sysd_3
U13 GND N2 X_gpio_3 B12 X_sd_a_14 Y7 X_sysd_4
U17 GND N3 X_gpio_4 A12 X_sd_cas_b V8 X_sysd_5
D6 VDD_18 P1 X_gpio_5 B11 X_sd_clk W8 X_sysd_6
D11 VDD_18 P2 X_gpio_6 A14 X_sd_cs_b_0 Y8 X_sysd_7
D15 VDD_18 R1 X_gpio_7 B14 X_sd_cs_b_1 U9 X_sysd_8
F4 VDD_18 P3 X_gpio_8 A2 X_sd_dq_0 V9 X_sysd_9
F17 VDD_18 T1 X_gpio_9 A3 X_sd_dq_1 W9 X_sysd_10
K4 VDD_18 P4 X_gpio_10 A4 X_sd_dq_2 Y9 X_sysd_11
L17 VDD_18 R3 X_gpio_11 A5 X_sd_dq_3 V10 X_sysd_12
R4 VDD_18 T2 X_gpio_12 A6 X_sd_dq_4 Y10 X_sysd_13
R17 VDD_18 U1 X_gpio_13 A7 X_sd_dq_5 Y11 X_sysd_14
U6 VDD_18 T3 X_gpio_14 A8 X_sd_dq_6 W11 X_sysd_15
U10 VDD_18 U2 X_gpio_15 A9 X_sd_dq_7 V11 X_sysd_16
U15 VDD_18 L4 X_gpio_16 B8 X_sd_dq_8 U11 X_sysd_17
C3 VDD_33 D16 X_gpio_17 B7 X_sd_dq_9 Y12 X_sysd_18
C5 VDD_33 D12 X_gpio_18 B6 X_sd_dq_10 W12 X_sysd_19
C7 VDD_33 C12 X_gpio_19 B5 X_sd_dq_11 V12 X_sysd_20
C8 VDD_33 C11 X_gpio_20 B4 X_sd_dq_12 U12 X_sysd_21
C13 VDD_33 C10 X_gpio_21 B3 X_sd_dq_13 Y13 X_sysd_22
C15 VDD_33 B9 X_gpio_22 B2 X_sd_dq_14 W13 X_sysd_23
C17 VDD_33 C9 X_gpio_23 B1 X_sd_dq_15 Y14 X_sysd_24
D5 VDD_33 D9 X_gpio_24 A10 X_sd_dqm_0 W14 X_sysd_25
D7 VDD_33 C4 X_gpio_25 B10 X_sd_dqm_1 Y15 X_sysd_26
D10 VDD_33 V6 X_hsync A13 X_sd_ras_b V14 X_sysd_27
D18 VDD_33 J2 X_pll_clki A11 X_sd_we_b W15 X_sysd_28
E18 VDD_33 L3 X_pll_ref C18 X_sdat_0 Y16 X_sysd_29
F1 VDD_33 H1 X_pll1_avdd C14 X_sdat_1 U14 X_sysd_30
N19 VDD_33 J3 X_pll1_avss D14 X_sdat_2 V15 X_sysd_31
R2 VDD_33 J1 X_pll1_dvdd C6 X_spdif P19 X_sysdramcs
U7 VDD_33 L2 X_pll1_dvss C16 X_swclk M19 X_sysgpcs0
V13 VDD_33 J17 X_pll2_avdd L20 X_sys_rdy_b W16 X_sysgpcs1
V20 VDD_33 H20 X_pll2_avss V16 X_sysa_2 L18 X_sysoe
W10 VDD_33 H18 X_pll2_dvdd W17 X_sysa_3 P20 X_sysrw
Y2 VDD_33 D19 X_pll2_dvss U16 X_sysa_4 Y17 X_syswe
Y18 VDD_33 V1 X_reseti_b V17 X_sysa_5 W2 X_test
H19 X_aclk F2 X_rom_cs_b W18 X_sysa_6 W5 X_vclk

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 327

Ball Signal Name Ball Signal Name Ball Signal Name Ball Signal Name
K19 X_ai_bclk C2 X_rom_d_0 Y19 X_sysa_7 Y1 X_vdata_0
K20 X_ai_data D2 X_rom_d_1 V18 X_sysa_8 W3 X_vdata_1
K18 X_ai_wclk D3 X_rom_d_2 W19 X_sysa_9 W4 X_vdata_2
E17 X_caclk E4 X_rom_d_3 Y20 X_sysa_10 V4 X_vdata_3
F18 X_caenab C1 X_rom_d_4 W20 X_sysa_11 U5 X_vdata_4
D20 X_careq D1 X_rom_d_5 V19 X_sysa_12 Y3 X_vdata_5
E19 X_casdata E3 X_rom_d_6 U19 X_sysa_13 Y4 X_vdata_6
T4 X_cp_clk E2 X_rom_d_7 U18 X_sysa_14 V5 X_vdata_7
W1 X_cp_din1 E1 X_rom_lat_0 T17 X_sysa_15 G1 X_viclk
V3 X_cp_din2 F3 X_rom_lat_1 U20 X_sysa_16 H3 X_vid_0
U3 X_cp_dout1 G4 X_rom_lat_2 T18 X_sysa_17 H2 X_vid_1
V2 X_cp_dout2 G2 X_rom_oe_b T19 X_sysa_18 J4 X_vid_2
L1 X_cp_ena_b G3 X_rom_we_b T20 X_sysa_19 K2 X_vid_3
G17 X_cvclk C19 X_sbclk R18 X_sysa_20 K3 X_vid_4
K17 X_cvdata_0 A17 X_sd_a_0 P17 X_sysa_21 K1 X_vid_5
J20 X_cvdata_1 A18 X_sd_a_1 R19 X_sysa_22 M1 X_vid_6
J19 X_cvdata_2 A19 X_sd_a_2 R20 X_sysa_23 M2 X_vid_7

PAGE 328 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Signal Description
This section describes the functionality of each signal, and also the characteristics of the signal – output
drive, input specification, etc.

System Bus
The system bus is used as one of the SDRAM memory busses in Aries products. It is also used to
connect a debug card in development systems, and can be used as an expansion bus for additional IO
and memory devices.
Signal Name Type Signal Description
X_sysd_(15-0) Bidirectional

8mA output
CMOS input

System Bus Data Low Word: This is the data bus over which the Aries
Media Processors communicate with the System Bus memory and any
external host controller that may be present.

X_sysd_(31-16) Bidirectional
8mA output
CMOS input
BGA only

System Bus Data High Word: This is the data bus over which the Aries
Media Processors communicate with the System Bus memory and any
external host controller that may be present.
When using SDRAM on the system bus interface, only data lines 15-0
are used to interface with the 16-bit SDRAM. Data pins 31-16 are left no
connect on the BGA package (they should however be either pulled up
or down).

X_sysa(24-23) Bidirectional
8mA output
CMOS input
BGA only

System Bus Address bits 24-23: When Aries is controlling a memory
device, it outputs address bits 24-23 on these lines.
Bit 24 is used as bit 1 of the external host address for slave access when
xhostAddrLo is clear.
These pins may also be configured as GPIO pins.

X_sysa_(22-18) Bidirectional
8mA output
CMOS input

System Bus Address bits 22-18: These lines are driven by Aries when
it ‘owns’ the bus.
Bit 20 is used as bit 1 of the external host address for slave access when
xhostAddrLo is clear.
These pins may also be configured either as GPIO pins or as the SIO B
channel.

X_sysa_17 Bidirectional
8mA output
CMOS input

System Bus Address bit 17/SDRAM Row Address Strobe: Normally
this pin functions as address bit 17. When using SDRAM on the system
bus this pin functions as the SDRAM row address strobe.
Note: When being used as RAS for SDRAM, this line should be pulled
up using a 10K resistor

X_sysa_(16-15) Bidirectional
8mA output
CMOS input

System Bus Address bits[16:15]/SDRAM Bank Address [1:0]:
Normally these pins function as address bits 16-15. When using
SDRAM on the system bus these pins function as the SDRAM bank
select bits.
Bits 14-13 are used as bits 1-0 of the external host address for slave
access when xhostAddrLo is set.
Note: When using a 2-bank SDRAM on the system bus, BA[1] is a no
connect

X_sysa_(14-2) Bidirectional
8mA output
CMOS input

System Bus Address bits[14:2]: Normally these pins function as
address bits 14-2. When accessing SDRAM on the system bus these pins
drive address lines 12-0 on the SDRAM chips.
Note: The least significant address bits need to be used based on the
type of SDRAM

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 329

Signal Name Type Signal Description
X_syswe 8mA output

Active low
System Bus Write Enable: When Aries is accessing memory on the
System Bus, this pin functions as System Bus Write Enable. It is used as
a memory write enable for DRAM and other memory types.
Note: It is a recommended that a 10K pull up be used on this line

X_sysgpcs1 8mA output
Active low

General Purpose Chip Select 1: In this mode, this pin functions as
General Purpose Chip Select 1. It can used to access SRAM, ROM, or
FLASH memory. It is active low.

X_sysoe 8mA output
Active low

DRAM Output Enable Control/SDRAM Data Mask: When accessing
SDRAM on the system bus, this pin functions as the data mask
enable/disable. For 16-bit devices this signal functions as both the
UDQM as well as the LDQM because byte-wide operations are not
supported on the System bus SDRAM interface.
Note: A 10K pullup is required on this line.

X_sysbr 4mA output
Active low
BGA only

Bus Request: This signal is asserted by Aries, to indicate to the external
host controller (or external bus arbiter) that it needs to gain control of the
System bus.

X_sysbg CMOS input
Active low

Bus Grant: This signal is driven by the external host controller (or
external bus arbiter), in response to the bus request assertion by Aries,
indicating to Aries that it has been granted the System bus.

X_sysbb Bidirectional
8mA output
CMOS input
Active low

Bus Busy: This line is asserted by Aries to indicate that it owns the bus.
This line can be asserted only after a Bus Grant has been received, and
there is no other device that is driving the Bus Busy signal. This output
may be driven low by other bus masters, so is driven low on assertion,
and is then briefly driven high before being set to tri-state. This signal
needs to have an external pull-up.

X_sysdramcs 8mA output
CMOS input

SDRAM Chip Select 0: When accessing SDRAM on the system bus,
this line functions as the logical bank 0 select pin.
Note: A 10K pullup is required on this line

X_syscas Bidirectional
8mA output
CMOS input
Active low

SDRAM Column Address Strobe: When accessing SDRAM on the
system bus, this line functions as the SDRAM column address strobe.
Note: It is a recommended that a 10K pullup be used on this line

X_sysrw Bidirectional
4mA output
CMOS input

System Bus Read/Write: Indicates the type of the transfer for both
master and slave cycles.

X_sysgpcs0 8mA output
Active low

General Purpose Chip Select 0/SDRAM Chip Select 1: This pin
functions as General Purpose Chip Select 0 to access SRAM, ROM, or
FLASH memory.
When accessing SDRAM on the System Bus, this pin can also used as
the Logical bank 1 select if enabled. Software should be set
appropriately to select the required mode.
Note: A 10K pullup is required on this line

X_syscs CMOS input
Active low

Chip Select: When this signal is asserted, Aries will qualify
X_sysa_(24-2) and X_sysrw to allow an external bus master to access its
internal registers.

X_sysbclk 8mA output System bus Clock: This clock is driven by Aries onto the System Bus
and is derived from the internal 108Mhz master clock divided by two to
give a 54 MHz output.

PAGE 330 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Signal Name Type Signal Description
X_sys_rdy_b CMOS input

Active low

System Ready: This indicates the completion of a cycle. When enabled
to do so, a falling edge (assertion) on this signal will end a ROM/SRAM
access.
Note: It is a recommended that a 10K pull up be used on this line

X_gpio_15 Bidirectional
4mA output
CMOS input

Upper Address Enable/System Address Bit 31: GPIO[15] can be
optionally assigned to the System bus under software control. When
assigned to the System bus, it functions as a time multiplexed Upper
Address Enable and System Address bit 31.
Upper Address Enable: This signal is driven low at the same time as
SYSBB, to indicate that Aries ‘owns’ the bus. UAE may be used to
externally force an address on the upper pins of the bus
System Address Bit 31: Driven by Aries when it owns the bus

X_gpio_(14-9) Bidirectional
4mA output
CMOS input

System Address Bits 30-25: GPIO[14:9] can be assigned to the System
bus under software control. When assigned to the System bus, they
function as System Address bits 30-25. They are driven by Aries when it
owns the bus

X_gpio_0 Bidirectional
4mA output
CMOS input

System Bus Interrupt Output: GPIO0 can be assigned to the System
Bus under software control. When assigned to the System bus it
functions as the system bus interrupt output.

Table 3 - System Bus Interface

Main Bus
The Main Bus is the primary SDRAM memory bus in Aries based products. It is configurable to support
one or two 16-bit SDRAM devices operating at 108 MHz.
Signal Name Type Signal Description
X_sd_dq_(15-0) Bidirectional

8mA output
CMOS input

Main Memory Data Bus: This is the conduit for transferring data
between Aries and the SDRAM on the Main Memory bus.

X_sd_a_(11-0) 8mA output

Main Memory Address Bus: Aries sends out the multiplexed
row/column address, to the main memory, on this bus.

X_sd_a_12 8mA output

Main Memory Address Bus Bit 12/Data Byte Mask for Bank 2:
When using a 64Mbit density SDRAM, this pin should be used to
convey address information to the SDRAM.
(When using 2 banks of 16Mbit density SDRAMs, this pin should be
used as the data mask for the lower DRAM byte for the secondary bank)

X_sd_a_13 8mA output

Main Memory Address Bus Bit 13/Data Byte Mask for Bank 2:
When using a 64Mbit density SDRAM, this pin should be used to
convey address information to the SDRAM.
(When using 2 banks of 16Mbit density SDRAMs, this pin should be
used as the data mask for the upper DRAM byte for the secondary bank.)

X_sd_a_14 8mA output

Main Memory Address Bus Bit 14:
This additional address line is required for 128 Mbit SDRAM only.
Note: This pin is not available in some Aries 3 packaging options.

X_sd_cas_b 8mA output
Active low

SDRAM Column Address Strobe

X_sd_ras_b 8mA output
Active low

SDRAM Row Address Strobe

X_sd_cs_b_0 8mA output
Active low

SDRAM Chip Select 0: This chip select is used to select the primary
SDRAM chip.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 331

Signal Name Type Signal Description
X_sd_cs_b_1 8mA output

Active low
BGA only

SDRAM Chip Select 1: This chip select is used to select the secondary
SDRAM chip. This function is only available in the BGA package.

X_sd_dqm_(1-0) 8mA output

SDRAM Data Byte Masks 1-0: Byte masks 1 and 0, enable
selection/de-selection of the upper and lower byte, respectively, of the
primary SDRAM bank.

X_sd_we_b 8mA output
Active low

SDRAM Write Enable

X_sd_clk 8mA output

SDRAM Clock Output: Aries drives the 108Mhz SDRAM clock to the
SDRAM banks.

Table 4 - SDRAM Interface

ROM Bus
The ROM bus is used to attach a ROM, EPROM or Flash memory to boot Aries. Refer to the ROM
interface section below for more information on how to attach the boot ROM. The pin description here
is for Mode 0 operation only.
Signal Name Type Signal Description
X_rom_d_(7-0) Bidirectional

4mA output
CMOS input
BGA only

ROM Multiplexed Address/Data Bus: This is the multiplexed ROM
Address and Data bus. Aries will send out the 24-bit ROM address on
this byte-wide bus. Three external octal-latches have to be utilized to
generate the full-blown 24-bit address.

X_rom_lat_2 Bidirectional
4mA output
CMOS input
BGA only

ROM Address Latch Enable 2: This is the latch enable for the octal
flip-flop that generate bits 16-23 of the ROM address. The latch will
capture the data on the rising edge of this signal.
Bidirectional to support other modes, see ROM interface section.

X_rom_lat_1 4mA output
BGA only

ROM Address Latch Enable 1: This is the latch enable for the octal
flip-flop that generate bits 8-15 of the ROM address. The latch will
capture the data on the rising edge of this signal.

X_rom_lat_0 4mA output
BGA only

ROM Address Latch Enable 0: This is the latch enable for the octal
flip-flop that generate bits 0-7 of the ROM address. The latch will
capture the data on the rising edge of this signal.

X_rom_cs_b 4mA output
Active low

ROM Chip Select

X_rom_we_b 4mA output
Active low
BGA only

ROM Write Enable

X_rom_oe_b 4mA output
Active low
BGA only

ROM Output Enable

Table 5 - ROM Interface

Video Interface
Aries supports CCIR656 compliant video output and input.

PAGE 332 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Signal Name Type Signal Description
X_vdata_(7-0) Bidirectional

4mA output
CMOS input

Video data Output/Mode Select: Video data conforming to the CCIR
656 standard is output on these pins.
During Reset these pins are used to configure Aries. Please refer to the
section below on Power Up Mode Selection for details.

X_vclk 12mA output Video Clock Output: The CCIR 656 27 MHz Video Clock output, that
is sent along with the Video Data output , is driven on this pin. This
signal is derived internally

X_field Bidirectional
4mA output
CMOS input

Field Synchronization: Derived internally or externally. This signal is
LOW during the first or even field, and HIGH during the second or odd
field. As an input, an edge resets the vertical counter.
This signal and X_hsync do not normally need to be connected to the
video encoder as the timing information is embedded in the CCIR 656
stream (SAV and EAV fields).

X_hsync Bidirectional
4mA output
CMOS input
Active low

Horizontal Synchronization: Derived internally or externally. As an
input, the start of horizontal sync resets the horizontal counter

X_viclk Schmitt input
BGA only

Video Input Clock: Clock for the CCIR656 video input channel.

X_vid_(7-0) CMOS input
BGA only

Video Input Data: This input data is synchronous to the input clock

Table 6 - Video Interface

Audio Interface
Aries supports up to four stereo output pairs and two stereo input pairs, in addition to a IEC 958 (S/P
DIF) output port.

The second stereo input channel is optionally available on three of the general purpose IO pins. This
second channel can also be used to capture data in I2S format from a drive.

Signal Name Type Signal Description
X_aclk Bidirectional

8mA output
CMOS input

Audio Master Clock: This pin carries the clock used to define the
timing for the Aries audio output. It can be either an output from the
internal Audio PLL, or an input from an external PLL.
Aries normally operates with this clockat 256 times the sample rate, but
can be programmed to work at other multiples.

X_sbclk 4mA output Audio Output Bit Clock: The synchronous serial bit clock. It is derived
from the external audio clock and is 64, 48, or 32 times the sample rate.

X_swclk X_spdif Audio Output Word Clock: This word clock gives the framing of the
audio serial bit stream. The polarity of this signal, and its alignment to
the data, are programmable

X_sdat_(2-0) 4mA output Audio Output Serial Data 0-2: These are the serial PCM audio data
outputs. Each pin supports one stereo pair, for a total of up to six
channels of audio data.

X_gpio_1 Bidirectional
4mA output
CMOS input

Audio Output Serial Data 3: This pin may optionally be configured to
carry a serial PCM audio data output. This pin supports one additional
stereo pair, for a grand total of up to eight channels of audio data.

X_spdif 4mA output IEC 958 Output: Self Clocking IEC 958 Data.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 333

Signal Name Type Signal Description
X_ai_bclk Bidirectional

4mA
outputCMOS
input

Audio Input Channel 1 Bit Clock: Provides the synchronous serial bit
clock for the serial input data. This does not have to operate at the same
sample rate as the serial bit clock output. It can be either internally
generated and output here, or externally generated and therefore input
here.

X_ai_wclk Bidirectional
4mA output
CMOS input

Audio Input Channel 1 Word Clock: Provides the framing
information for the serial data input stream. The relationship of this to
the input data is programmable. It can be either internally generated and
output here, or externally generated and therefore input here.

X_ai_data CMOS input Audio Input Channel 1 Serial Data: This is a serial stereo audio input
channel that conforms to the serial (I2S) interface

X_gpio_5 Bidirectional
4mA output
CMOS input

Audio Input Channel 2 Bit Clock: Provides the synchronous serial bit
clock for the serial input data. This does not have to operate at the same
sample rate as either the serial bit clock output or input channel 1. It can
be either internally generated and output here, or externally generated
and therefore input here.

X_gpio_6 Bidirectional
4mA output
CMOS input

Audio Input Channel 2 Word Clock: Provides the framing
information for the serial data input stream. The relationship of this to
the input data is programmable. It can be either internally generated and
output here, or externally generated and therefore input here.

X_gpio_4 Bidirectional
4mA output
CMOS input

Audio Input Channel 2 Serial Data: This is a serial stereo audio input
channel that conforms to the serial (I2S) interface

Table 7 - Audio Interface

Coded Data Interface
The Coded Data Interface is used to connect to the read data channel of DVD Drives or other media
devices. This interface is highly configurable by software.
Signal Name Type Signal Description
X_cvdata_(7-0) CMOS input Coded Video Data Bus: Can be used for parallel or serial Program

Elementary Stream Video/Audio, Program Stream or Transport Stream
Data.

X_cvenab CMOS input

Coded Video Enable: Can be used for Data Enable (CVENAB) or Data
Strobe (CVSTROBE) for the Coded Video/Program Stream/Transport
Stream. The signal polarity is programmable.

X_cvclk Schmitt input Coded Video Clock: Can be used for Coded Video/Program
Stream/Transport Stream Data Clock. The signal polarity (active edge) is
programmable.

X_cvreq 4mA output Coded Video Request: Can be used for Coded Video/Program Stream
Request when this interface is hand-shaked. The signal polarity is
programmable.

X_caenab CMOS input

Coded Audio Enable: Can be used for Coded Audio Data Enable
(CAENAB) or Coded Audio Data Strobe (CASTROBE). The signal
polarity is programmable.

X_casdata CMOS input Coded Audio Serial Data: This pin can be used either for Coded Serial
Audio Data (CASDATA), or Transport Stream/Program Stream Error
Flag (CVERRFLG)

X_caclk Schmitt input Coded Audio Clock: This is the Coded Audio Data Clock. The signal
polarity (active edge) is programmable.

PAGE 334 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Signal Name Type Signal Description
X_careq Bidirectional

4mA output
CMOS input

Coded Audio Request: This pin can be used as either the Coded Audio
Request (CAREQ), or Transport Stream/Program Stream Top of Packet
Signal (CVTOP). The signal polarity is programmable.

Table 8 - Coded Data Interface

NUON Serial Bus Interface
The NUON serial bus interface is used to connect to the two controller ports on NUON compatible
products.
Signal Name Type Signal Description
X_cp_clk 4mA output Controller Clock Output: Normally operates at 1 MHz,.
X_cp_dout(2-1) 4mA output Controller Data Outputs 2-1
X_cp_din(2-1) CMOS input Controller Data Inputs 2-1
X_cp_ena_b 4mA output

Active low
Controller Data Tri-state Enable: Used to control an external tri-state
buffer.

Table 9 - Controllers Interface

Clocks and Reset

Signal Name Type Signal Description
X_reseti_b Schmitt input System Reset: This is the system power-on reset input. An assertion on

this pin will bring Aries back to its initial state.
X_pll_clki CMOS input System Clock Input: This is the main clock input to Aries. This clock

input is either a frequency to reference the mail PLL (27 MHz is
normally used), or 108Mhz to be used directly as the system clock.

X_pll_ref 4mA output
BGA only

PLL Reference Clock Output: This pin outputs a 27 MHz reference
clock to an external PLL. This is normally only required when Aries is
being used with an external Transport Stream decoder.

Table 10 - Clocks and Reset

General IO Interface, Multi-Purpose Pins
Aries 3 can have as many as 36 pins allocated as general purpose inputs and outputs, under software
control. Many of these can have alternate dedicated functions, and not all are available when using the
QFP package.
Signal Name Type Signal Description
X_sysa_24 Bidirectional

8mA output
CMOS input
BGA only

Configurable as:
• System Bus address bit 24, and bit 1 of the external host address

for slave access when xhostAddrLo is clear.
• GPIO[35]

X_sysa_23 Bidirectional
8mA output
CMOS input
BGA only

Configurable as:
• System Bus address bit 23
• GPIO[34]

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 335

Signal Name Type Signal Description
X_sysa_22 Bidirectional

8mA output
CMOS input

Configurable as:
• System Bus address bit 22
• GPIO[33]
• SIO B receive data

X_sysa_21 Bidirectional
8mA output
CMOS input

Configurable as:
• System Bus address bit 21
• GPIO[32]
• SIO B request/acknowledge

X_sysa_20 Bidirectional
8mA output
CMOS input

Configurable as:
• System Bus address bit 20, and bit 0 of the external host address

for slave access when xhostAddrLo is clear.
• GPIO[31]
• SIO B transmit data

X_sysa_19 Bidirectional
8mA output
CMOS input

Configurable as:
• System Bus address bit 19
• GPIO[30]
• SIO B request

X_sysa_18 Bidirectional
8mA output
CMOS input

Configurable as:
• System Bus address bit 18
• GPIO[29]
• SIO B clock

X_gpio_(25-16) Bidirectional
4mA output
CMOS input
BGA only

General Purpose IO Pins for the BGA package.

X_gpio_15 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(15)
• System Bus address bit 31
• System Bus upper address enable

X_gpio_14 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(14)
• System Bus address bit 30
• PWM output 1

X_gpio_13 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(13)
• System Bus address bit 29
• PWM output 0

X_gpio_12 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(12)
• System Bus address bit 28
• System Bus NAND flash busy.

X_gpio_11 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(11)
• System Bus address bit 27
• Secondary Serial Peripheral Bus interface SDA
• SIO A receive data

PAGE 336 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Signal Name Type Signal Description
X_gpio_10 Bidirectional

4mA output
CMOS input

Configurable as:
• GPIO(10)
• System Bus address bit 26
• Secondary Serial Peripheral Bus interface SCL
• SIO A request/acknowledge

X_gpio_9 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(9)
• System Bus address bit 25
• SIO A transmit data

X_gpio_8 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(8)
• SIO A request

X_gpio_7 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(7)
• SIO A clock

X_gpio_6 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(6)
• Second audio input channel word flag

X_gpio_5 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(5)
• Second audio input channel bit clock

X_gpio_4 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(4)
• Second audio input channel data

X_gpio_3 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(3)
• Serial Peripheral Bus interface SDA

X_gpio_2 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(2)
• Serial Peripheral Bus interface SCL

X_gpio_1 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(1)
• Audio input high rate clock output
• Audio output I2S data line sdat[3]

X_gpio_0 Bidirectional
4mA output
CMOS input

Configurable as:
• GPIO(0)
• System Bus interrupt output

Table 13 - General IO Interface

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 337

System Bus Overview
This interface has two modes of operation, external and internal. Internal mode allows Aries to directly
interface to devices on the bus by generating the necessary strobes for each device. It can handle
multiple bus master. Internal mode is used in all current applications.

 In the external mode it operates in conformance with the PowerPC MPC860 type bus interface which
uses the 860 bus arbiter to accommodate multiple bus masters. Note: External mode is considered
obsolete and is no longer supported. It is not documented here.

Internal Mode
In this mode of operation, Aries is responsible for reaching the various devices on the bus. While there is
still provision for multiple masters on the bus, Aries is the memory controller and will generate the
needed strobes. In this mode, Aries also takes responsibility for DRAM refresh. External masters cannot
access memory using the Aries internal memory controller.

Internal mode SDRAM Control
This table summarizes the System Bus SDRAM requirements:
Frequency 54 MHz
Memory width 16-bit
Memory Size 2 MB min, 256 MB max
Banks 1 or 2 logical banks (chip selects), each 16-bit wide
Interface LVTTL, 3.3V operation

SDRAM types supported
Technology Internal

banks
I/O # Devices/

Chip Sel
Row/Col Addr Bank Addr Memory Size /

Chip Select
2 16 1 X_sysa[12:2] X_sysa[15] 2 MB
2 8 2 X_sysa[12:2] X_sysa[15] 4 MB

16 Mbit

2 4 4 X_sysa[12:2] X_sysa[15] 8 MB
2 16 1 X_sysa[14:2] X_sysa[15] 8 MB
2 8 2 X_sysa[14:2] X_sysa[15] 16 MB
2 4 4 X_sysa[14:2] X_sysa[15] 32 MB
4 16 1 X_sysa[13:2] X_sysa[16:15] 8 MB
4 8 2 X_sysa[13:2] X_sysa[16:15] 16 MB

64 Mbit

4 4 4 X_sysa[13:2] X_sysa[16:15] 32 MB
4 16 1 X_sysa[13:2] X_sysa[16:15] 16 MB
4 8 2 X_sysa[13:2] X_sysa[16:15] 32 MB

128 Mbit

4 4 4 X_sysa[13:2] X_sysa[16:15] 64 MB
4 16 1 X_sysa[14:2] X_sysa[16:15] 32 MB
4 8 2 X_sysa[14:2] X_sysa[16:15] 64 MB

256 Mbit

4 4 4 X_sysa[14:2] X_sysa[16:15] 128 MB

Programmable options
• Either EDO or SDRAM can be enabled. However, both types cannot co-exist. Use of EDO

DRAM is now considered obsolete and not supported.

PAGE 338 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

• Each logical bank can have any of the supported SDRAM types (depends on being able to meet
timing). This means that the minimum memory size available is 2 MB (2MB + 0 MB), and the
maximum memory size is 256 MB (128 MB + 128 MB).

• Each logical bank can be individually enabled or disabled.

• An option to make both the logical banks appear as either contiguous or non-contiguous memory
is provided.

• CAS Latencies of 1/2/3 are supported.

• Burst lengths of 2/4/8 are supported.

• Programmable tWR (a.k.a tDPL), tRAS, tRP, and tRC timings are supported. tRCD is always 2
clocks.

• Programmable refresh rates are supported.

• An option is provided to tri-state the sdram address, control, and data signals during an external
master access to systembus sdram.

Pinout
Pin Name SDRAM

signal
Remarks

X_sysdramcs CS0# 10 K pull-up required. Logical bank0 chip select.
X_sysgpcs0 CS1# 10 K pull-up required. Logical bank1 chip select if enabled, else behaves as

a chip select signal to access SRAMS/ROMS, etc.
X_sysoe DQM 10 K pull-up required. For 16-bit devices, this signal functions as UDQM as

well as LDQM because byte-wide operations are not supported.
X_sysa_17 RAS# 10K pull-up recommended.
X_syscas CAS# 10K pull-up recommended.
X_sysa_1 WE# 10K pull-up recommended.
X_sysa_(14-2) A[12:0] Use the least significant address bits, depending on the type of SDRAM.
X_sysa_(16-15) BA[1:0] X_sysa[16] is a no-connect for 2 Bank parts.
X_sysd[15:0] DATA[1

5:0]

X_sysbclk CLK
CKE 10 K pull-up required.

SDRAM initialization
The following flowchart may be used for sdram initialization, assuming that sysCtrl, SysMemctl, and
sdramCtrl all have default values.

1. Disable refresh by setting sdramCtrl[30] = 0.
2. Set internal mode of operation: sysCtrl[18] = 0.
3. Program refresh rate in sysMemctl[14:4].
4. Set up SDRAM logical bank0 and bank1 options in sdramCtrl:

dram0Enable, dram0Banks, dram0Width, dram0Tech,
dram1Enable, dram1Banks, dram1Width, dram1Tech,
contiguousSdram,
Set trc to a minimum value of 2
Set tras to a minimum value of 2

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 339

If Micron SDRAM, set twr value = 1, else set twr value = 0
trp value may be set to 0 for most SDRAMs.
Set valid values for casLatency, burstLength
Clear refreshCmd, prechCmd, and mrsCmd bits.

5. Set prechReq. Wait until it is cleared by the SDRAM controller.
6. Wait for a few clocks (about 4-5 clocks)
7. Set mrsReq. Wait until it is cleared by the SDRAM controller.
8. Wait for a few clocks (about 4-5 clocks)
9. Set refreshReq. Wait until it is cleared by the SDRAM controller.
10. Wait for a few clocks (about 4-5 clocks)
11. Set refreshReq. Wait until it is cleared by the SDRAM controller.
12. Wait for a few clocks (about 4-5 clocks)
13. Enable refresh by setting sdramCtrl[30] = 1.

Address Space
Dram0
_enable

Dram1
_enable

Contiguous
_sdram

DRAM0 Address
Space

DRAM1 Address
Space

0 0 X Disabled Disabled
1 0 X 8XXXXXXXh Disabled
0 1 0 Disabled 9XXXXXXXh
0 1 1 Disabled 8XXXXXXXh
1 1 0 8XXXXXXXh 9XXXXXXXh
1 1 1 8XXXXXXXh contiguous to

DRAM0

Operation
The Systembus controller can operate in external or internal mode. The following description applies to
the SDRAM controller (SDRAMC) within the Systembus controller which is active only in internal
mode.

In internal mode, the Systembus controller allows the MPEs to access Systembus SDRAM as well as
other devices like SRAM, ROM, and other chip-select controlled peripheral devices via the internal
Other Bus DMA (ODMA) interface. The Aries 3.0 is the default owner of the Systembus. External
masters on the Systembus can access Aries 3.0 internal registers by de-asserting the grant signal and
asserting the chip-select signal, or they can access memory devices on the bus, by not asserting chip-
select to the Aries 3.0.

The SDRAMC can be programmed to support two logical banks DRAM0 and DRAM1. Each logical
bank is 16-bits wide, and is controlled with a separate chip select signal.

Summary of Internal Mode Cycles
The various types of cycles in internal mode are described below:

1. MPEs access the systembus SDRAM memory through the Other Bus interface.

2. SDRAM Controller issues software initiated mode register set, pre-charge, and refresh
commands to the SDRAMs.

3. SDRAM Controller issues refresh cycles to the SDRAMs.

PAGE 340 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

4. External Systembus masters access Aries2.0 registers by de-asserting the grant and by asserting
chip-select, or access the systembus SDRAM memory by de-asserting the chip-select and by
taking away the grant.

MPE data accesses via the ODMA interface
MPEs access the SDRAM via the ODMA interface. The MPEs communicate the start address, the
length of the DMA transfer in long-words, and the type of cycle (read/write) to the ODMA controller.
The ODMA controller sends the start address and the cycle type information to the SDRAMC. The
ODMA controller then sends as many data requests as specified by the MPE. Since the SDRAMC does
not know the length of the transfer, the ODMA controller sends a special command indicating the last
transfer. One long-word is transferred between the ODMA controller and the SDRAMC for each data
request from the ODMA controller.

In response to an ODMA address pointer transfer command, the SDRAMC will first get ownership of
the bus, and will activate the same row in all the internal banks of the logical bank being accessed. Since
the width of the SDRAM interface is 16-bits, each data request from the ODMA controller is serviced as
a read or write transfer on the SDRAM bus as a burst cycle of length 2, regardless of the burst-length
programmed into the SDRAM. After the last transfer in a DMA cycle, all the rows in both logical banks
are closed. The order in which the internal banks are activated depends on the bank in which the start
address falls.

Start Address falls
in Bank:

Activation order
(4 Banks)

Activation order
(2 Banks)

0 0 � 1 � 2 � 3 0 � 1
1 1 � 2 � 3 � 0 1 � 0
2 2 � 3 � 0 � 1 0 � 1
3 3 � 0 � 1 � 2 1 � 0

 During SDRAM read cycles, the SDRAMC will fetch data from incremental address locations and store
them in a 16 bit x 4 deep FIFO. ODMA read requests are serviced from the FIFO. If the ODMA
controller holds off the other bus, the FIFO will become full, and, further read commands are not issued
until the ODMA controller reads from the FIFO again. If the SDRAM is programmed with a burst
length greater than 2, and if the FIFO becomes full in the middle of a burst, the extra data from the
SDRAM is ignored. A new read command from the correct address is issued once there is space in the
FIFO. When the SDRAMC receives the last request command from the ODMA controller, it will stop
issuing read commands on the SDRAM bus. It will then wait until the FIFO becomes empty and will
issue a pre-charge-all banks command to the SDRAM. The FIFO pointers are cleared at this time
because the FIFO could have data from anticipatory reads that were actually not required.

During write cycles, data from the ODMA controller is written to the FIFO. The SDRAMC will read
from the FIFO and will write the data to the SDRAM. If the ODMA controller holds off the other bus,
the FIFO will become empty, and the SDRAMC will not issue write commands to the SDRAM until the
ODMA controller writes more data into the FIFO. If the SDRAM is programmed with a burst length
greater than 2, and if the FIFO becomes empty in the middle of a burst write, the DQM signal is de-
asserted and the SDRAM will ignore the data on the bus. When the SDRAMC receives the last request
command from the ODMA controller, it will write out all the data from the FIFO, and will issue a pre-
charge-all banks command to the SDRAM.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 341

If a page break is detected, the SDRAMC will issue a pre-charge-all banks command to the SDRAM
which will cause all open rows to be closed. The new row will then be activated in all the internal banks
of the logical bank being accessed, and the SDRAMC will continue with read or write commands. When
the new row is activated in all the banks because of a page miss, the activation order is always 0 � 1 �
2 � 3.

If the two logical banks are programmed as non-contiguous, accesses within each logical bank will wrap
to address 0 once the maximum address is reached. If the two logical banks are programmed as
contiguous, if the maximum address of DRAM0 is reached, it is treated as a page-break, and new
accesses will begin from Address 0 of DRAM1. Once the maximum address of DRAM1 is reached,
accesses will wrap to Address 0 of DRAM0.

In the following timing diagrams, the signal “other” is an internal signal that indicates that a DMA cycle
is in progress on the Systembus. The signal “ref_req” is an internal signal that indicates that refresh is
pending. The signal “refresh” indicates that a refresh operation is in progress. The signal “sa_enable_b”
is the output enable control for the dram memory address bus, the bank address bits, dram_ras_b, and
dram_we_b

PAGE 342 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Figure 46: Basic SDRAM read cycle (64 Mbit, 4B x 16, CASLAT = 3)

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 343

Figure 47: Basic SDRAM write cycle (64 Mbit, 4B x 16)

PAGE 344 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Figure 48: Page Break (64Mbit, 4B x 16). Access switches from Bank3, Row0 to Bank0, Row1.

Page Miss, Pre-
charge All

Act B3, R0

Act B0, R0

Act B1, R0

Act B2, R0

Act B0, R1

Act B1, R1

Act B2, R1

Act B3, R1

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 345

Figure 49: Seamless switch from DRAM0 to DRAM1 (contiguous, Dx = DRAM0 or DRAM1)

Act D0, B3, Rfff

W D0, B3, Rfff

Pre-charge All

Act D1, B0, R0

Act D1, B1, R0

Act D1, B2, R0

Act D1, B3, R0

PAGE 346 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Software initiated cycles
Initializing SDRAM requires a pre-charge-all command, a mode register set command, and two refresh
commands, after which the SDRAM is ready. These cycles are issued when the initialization code sets
the mrs_cmd, prech_cmd, or the refresh_cmd bits in SDRAM_CTRL. In response, Aries arbitrates for
the bus, and will issue the command to the SDRAMs. The bits are cleared by the SDRAMC after
execution. Note that these commands are issued to both the logical banks at once (CS0# and CS1#), so
all DRAMs are initialized at once. Software must insert delays between writing these register bits.

Figure 50: SDRAM initialization

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 347

SDRAM Refresh
The refresh rate is controlled through the refLength bits in the sysMemctl register. When the refresh
request goes active, the SDRAMC will issue an auto-refresh command to the logical banks that are
enabled, if Aries owns the Systembus. If the bus is not free, the refresh will be internally pending until
the bus becomes free. If a refresh request goes active in the middle of a DMA cycle, the refresh cycle is
performed after the DMA cycle completes and all the rows are closed.

Figure 51: Refresh cycle after SDRAM read

End of DMA,
pre-charge-all

Pending
refresh
serviced

PAGE 348 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Address Mapping
The following table shows the memory map from other-bus address to SDRAM addresses.

Table 19: Other bus to SDRAM memory map (Array Size x Width x #Banks)

Note: MA0 is forced to 0 during read/write commands because accesses to the SDRAM are always on long-word boundaries.
MA10 is forced to 0 during read/write commands because the auto-pre-charge feature of the SDRAM is not used. Shaded
regions indicate address bits that are not seen by the SDRAMs.

Internal Mode Master Operation
When Aries takes control of the bus it can access any of the devices on the bus by means of the various
strobes implemented in this mode. The main thing to access on the bus will be the DRAM. This will be
done by the DRAM control signals, while other devices such as SRAM, ROM or micro-controllers can
be addressed using the general-purpose chip selects. Memory accesses can be done anytime the grant
signal is active. Once the bus has been obtained it can be locked by keeping the busy line active. This
puts the other bus master on hold until Aries decides to deactivate the busy line.

Arbitration
There can be two types of cycles done on the System Bus, internal Other Bus DMA and refresh cycles.
A third type may or may not be needed depending if there is an external processor that wants to
communicate with Aries. For those that come from within Aries, each has its own request line which
indicates that cycle time is needed on the bus. If both types of cycles are being requested then the refresh
request has priority since it can take less time to complete and occurs less often than OB cycles. The
extra variable in the arbitration comes about when an external CPU may be competing for the bus.
Therefore, the process of obtaining bus has two parts for refresh and OB cycles originating from within
Aries. The first involves competing between refresh and OB, and the second has the winner competing
with the external host.

16 Mbit 512Kx16 x2 1Mx8x2 2Mx4x2

64 Mbit 2Mx16x2 4Mx8x2 8Mx4x2 1Mx16x4 2Mx8x4 4Mx4x4

128 Mbit 2Mx16x4 4Mx8x4 8Mx4x4

256 Mbit 4Mx16x4 8Mx8x4 16Mx4x4

11 x 8 11 x 9 11 x 10 13 x 8 13 x 9 13 x 10 12 x 8 12 x 9 12 x 10 12 x 11 13 x 9 13 x 10 13 x 11

Row Col Row Col Row Col Row Col Row Col Row Col Row Col Row Col Row Col Row Col Row Col Row Col Row Col

MA 0 10 GND 11 GND 11 GND 10 GND 11 GND 11 GND 11 GND 11 GND 11 GND 11 GND 11 GND 11 GND 11 GND

MA 1 11 2 12 2 12 2 11 2 12 2 12 2 12 2 12 2 12 2 12 2 12 2 12 2 12 2

MA 2 12 3 13 3 13 3 12 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13 3

MA 3 13 4 14 4 14 4 13 4 14 4 14 4 14 4 14 4 14 4 14 4 14 4 14 4 14 4

MA 4 14 5 15 5 15 5 14 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5 15 5

MA 5 15 6 16 6 16 6 15 6 16 6 16 6 16 6 16 6 16 6 16 6 16 6 16 6 16 6

MA 6 16 7 17 7 17 7 16 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7

MA 7 17 8 18 8 18 8 17 8 18 8 18 8 18 8 18 8 18 8 18 8 18 8 18 8 18 8

MA 8 18 10 19 10 19 10 18 10 19 10 19 10 19 23 19 23 19 23 19 23 19 24 19 24 19 24

MA 9 19 22 20 22 20 22 19 24 20 24 20 24 20 24 20 24 20 24 20 24 20 25 20 25 20 25

MA 10 20 GND 21 GND 21 GND 20 GND 21 GND 21 GND 21 GND 21 GND 21 GND 21 GND 21 GND 21 GND 21 GND

MA 11 21 23 22 23 22 23 21 25 22 25 22 25 22 25 22 25 22 25 22 25 22 26 22 26 22 26

MA 12 22 24 23 24 23 24 22 26 23 26 23 26 23 26 23 26 23 26 23 26 23 27 23 27 23 27

BA1 10

BA0 9

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 349

The figure below shows the waveforms of refresh and internal Other Bus DMA wanting to get on the
bus at the same time. The bus is idle to begin with so the only competition is between the two requests.
As soon as one starts, the bus-busy signal is asserted to notify a would-be external host that the bus is
being used. After the refresh cycle has finished the OB cycle will start immediately since the request has
already been set for some time. Once done, and since no more requests are present for the bus, the bus
will go idle and the bus-busy signal is de-asserted. At the time the second cycle started, an external host
could have very well removed the bus-grant signal in order to get the bus once it has become idle.

54MHz

bus-busy

bus-grant

otherreq

refreq

system bus idle refresh ticks other DMA ticks idle

Figure 55: Other DMA and refresh arbitration

So instead of going idle the bus could have been taken over by the external host, but not until Aries was
completely done with its current cycles. Another variation to this timing waveform picture would occur
if the requests came in while the external processor controlled the bus. In that case, the two requests will
both wait until the grant line tells Aries that the bus is available for use.

Aries can lock the bus in the same manner it did in the other mode. This is done by setting the bus-busy
line active for as long as it wants. Of course, first it must obtain the bus which sets the busy line active,
after the initial cycle the busy line will remain active so that subsequent Aries requests can take place
immediately. The bus-busy line tells the external host that the bus is occupied.

Master accesses
External masters can access Aries registers by asserting Aries chip-select, driving a valid address on the
System Bus address, driving a valid value on the RW signal, and either reading or writing the data bus.

If the tristate_sdram_control bit is set, external masters can also access the SDRAM directly by
making Aries tri-state all the SDRAM interface signals. In this case, the external master is responsible
for generating all the SDRAM address, control, and data signals. When the external master gains control
of the bus, it is guaranteed that all the SDRAM rows will be in a pre-charged state. Once the external
master asserts X_sysbb, the earliest clock edge on which it can issue commands to the SDRAM is
determined by the SDRAM’s tRC1 (refresh to activate) timing parameter, and also the time it takes for
Aries to tri-state all the SDRAM signals. It is recommended that the external master have a
programmable wait state (minimum 1, maximum 4) between asserting X_sysbb and starting SDRAM
accesses. When the external master finishes its access, it must pre-charge all open rows in all the internal
banks of all logical banks before handing over control of the bus back to Aries. Once the master de-
asserts X_sysbb signaling the completion of its cycle, if Aries has an internal cycle pending, it will
assert the enable signals for the CAS# and DQM signals along with X_sysbb, and the enables for the
CS#, WE#, RAS#, SDRAM address, bank address, one clock later. The external master is not allowed to
issue a Mode Register Set command to the SDRAM.

PAGE 350 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Note that in internal mode, Aries is the default owner of the bus. External masters can issue cycles by
negating the X_sysbg to Aries. If the external masters are expected to access SDRAM, for the SDRAM
signals to be tri-stated, the grant must remain de-asserted for the duration of the external master cycle.
Aries will not issue SDRAM refresh cycles when the external master owns the bus. If the master is
expected to hold the bus for more than one refresh period, it is responsible for generating auto-refresh
commands to the SDRAM.

For master cycles, the value of the register bit tristate_sdram_bus determines the signals that will be
tri-stated by Aries. The following table describes the conditions under which the System Bus signals are
tri-stated in internal mode. See the following diagrams for tri-state timing information.

Table 20: Tri-state control

Signal Name Tristate
control

Remarks

X_sysdramcs,
X_sysgpcs0,
X_sysoe,
X_syscas

0 Always driven. These are the SDRAM CS0#, CS1#, DQM, and CAS#
signals respectively.

1 Driven one clock after Aries 3 gets bus grant, or if Aries 3 is executing a
Systembus cycle and has asserted X_sysbb. In other words, these signals
are tri-stated when an external master drives the bus (the X_sysbg is
inactive, and X_sysbb cannot be asserted by Aries 3 anyway until it has
the grant for at least one clock).

X_sysa_ X This bus carries the SDRAM address, bank address, RAS# and WE#
signals. This bus is driven by Aries 3 only when it is executing a
Systembus cycle. It is tri-stated at all other times.

X_sysd X This bus carries the SDRAM data signals. It is driven by the Aries 3 when
it is executing Systembus write cycles, or when an external master is
accessing the Aries 3 registers by asserting the Aries 3 chip-select input. It
is tri-stated at all other times.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 351

Figure 56: External Master access to Aries register.

PAGE 352 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Figure 57: Master Handoff to Aries

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 353

System Bus Internal Mode Signal Timing

Aries Bus Master

54MHz

BG_B

BB_B

SD

SD

write data

tBGS

BBH

t

DZ

tBGH

t BBL

internal

tDOt t
DD

t BBS

BBR

t BBZ

t

SA

RW

SWE

SOE

tBBO

SAD

t

SAOt

SAZt

tRWDRWOt

RWZt

TSZt
CSLt

WELt

tSOHSOLt

GPCS
tGPHGPLt

tDS DHt
write data

CSHt

WEHt

Figure 58

Internal Mode timing
Name Min (ns) Max (ns) Description
tWEL 2 7 Write enable falling edge referenced to System Bus clock
tWEH 2 7 Write enable rising edge referenced to System Bus clock
tSOL 2 7 Output enable falling edge referenced to System Bus clock
tSOH 2 7 Output enable rising edge referenced to System Bus clock
tGPL 1.3 6 General chip select falling edge referenced to System Bus clock
tGPH 1.3 6 General chip select rising edge referenced to System Bus clock

All timings are provisional.

PAGE 354 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Internal Mode SDRAM timing
Control outputs: RAS, CAS, WE, CS0, CS1, DQM

Data outputs: D15-D0

Addr outputs: A0-A12, BA0-BA1

Data inputs: D0-D15

Name Min (ns) Max (ns) Description
TSCO 10 15 Control output valid from System Bus clock
TSDO 9 15.2 Data output valid from System Bus clock
TSAO 9 16.5 Addr output valid from System Bus clock
TSDS 7 Data input setup to System Bus clock
TSDH 2 Data input hold to System Bus clock

All timings are provisional.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 355

Main Bus SDRAM Interface
Aries supports either one or two 16 bit wide SDRAMs, or either two or four 8 bit wide SDRAMs, for a
total of 2 to 16 Megabytes of DRAM. Either 16 or 64 Mbit parts may be used.

The DRAM specification requirements are summarized below:

RAM Specification (Minimum)
I/O LVTTL (using 3.3V CMOS IO on Aries)
Frequency >108MHz
Burst Length 4
Wrap Sequential
Latency 3
Mode Register Programmable
Init Sequence Programmable
TCAS Programmable (pipelined or pre-fetch)
TRCD Programmable RAS to CAS delay (min) (2..5)
TRAS Programmable RAS to pre-charge delay (min) (1..16)
TRP Programmable Pre-charge to RAS delay (min) (1..8)
TRRD Programmable RAS to RAS delay (min) (1..8)
TDPL Programmable Write to Pre-charge delay (min) (1..4)
Refresh Type RAS only refresh
Refresh Cycle Programmable

Commands not used
NOP No operation
BST burst stop
REDA read with auto pre-charge
WRITEA write with auto pre-charge
PALL pre-charge all (can be forced during initialization)
MRS mode register set (can be forced during initialization)

The SDRAM configurations are summarized below:

 A B C D
MBITS 16 16 16 64
BY 16 16 8 16
PARTS 1 2 2 1
MBYTES 2 4 4 8

Valid SD_OUT

SD_DQ_OUT

SD_DQ_IN

SD_CLK

Valid

9.26nS
1/108MHz

>3ns >3ns

>3ns

<7ns

Valid

>=0

Figure 59: SDRAM bus timing

PAGE 356 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

The following devices are not yet qualified, but appear to meet this criteria, providing speed grades
greater than 108MHz are used.
16 bit wide parts: TOSHIBA TC59S1616AFT

NEC uPD4516161
SAMSUNG KM416S1120A

8 bit wide parts: NEC uPD4516821
TOSHIBA TC59S1608AFT
SAMSUNG KM48S1120A

The following is the timing on the Aries Main Bus SDRAM interface:

Name Min (ns) Max (ns) Description
tDSU 0.6 Data input setup time required relative to SD_CLK_IN rising edge
tDHD 0.8 Data input hold time required relative to SD_CLK_IN rising edge
tDOD 4.6 6.7 Data output delay relative to SD_CLK rising edge
tAOD 4.9 7.1 Address output delay relative to SD_CLK rising edge
tRASD 5.0 6.5 SD_RAS output delay relative to SD_CLK rising edge
tCASD 5.2 6.6 SD_CAS output delay relative to SD_CLK rising edge
tWED 5.3 6.9 SD_WE output delay relative to SD_CLK rising edge
tDQMD 4.8 6.0 SD_DQM[0-1] output delay relative to SD_CLK rising edge
tCSD 4.8 5.9 SD_CS[0-1] output delay relative to SD_CLK rising edge

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 357

ROM Interface
The Aries ROM interface is used to attach a ROM or Flash type memory for initial bootstrap, and is
usually where the operating software is loaded from. The ROM interface may either be on a separate
bus, or may be part of the System Bus. When the 208-pin PQFP package option is selected for Aries 3
then the ROM has to be attached to the system bus. This is modes 2 and 3 as described below.

ROM Interface description
The ROM interface has been enhanced for Aries 3 to support NAND flash as well as bus type memory
devices, and also to allow the boot ROM memory to be on the System Bus. These options are configured
at reset by option resistors on X_vdata[3] and [1] as follows:

X_vdata[3,1] Mode Description
00 0 Bus type memory on separate ROM interface pins, as Aries 1 & 2. External octal

latches required for address bus.
01 1 NAND flash type memory on ROM interface pins.
10 2 Bus type memory on System Bus interface pins. Full address bus without latches.
11 3 NAND flash type memory on System Bus interface pins.

Pins are used to connect to memory devices for the boot code as follows:

Pin Mode 00 Mode 01 Mode 10 Mode 11
X_rom_cs_b CSB CEB CSB CEB
X_rom_oe_b OEB REB not used not used
X_rom_we_b WEB WEB not used not used
X_rom_lat[0] latch A0-7 CLE not used not used
X_rom_lat[1] latch A8-15 ALE not used not used
X_rom_lat[2] latch A16-23 R/B not used not used
X_rom_d[0-7] DQ0-7 I/O 1-8 not used not used
X_sysd[0-7] DQ0-7 I/O 1-8
X_systa (syscas / systa) OEB REB
X_syswe WEB WEB
X_sysd[8] A0 CLE
X_sysd[9] A1 ALE
X_sysd[10-15] A2-7
X_sysa[2-17] A8-23
X_gpio[12] R/B

Note that this table shows only how the appropriate memory type is connected to Aries. Other functions
of the System Bus are not shown here.

Mode 0 Operation
The ROM interface uses a multiplexed address/data bus in order to conserve pins. External to the Aries
chip there are three rising-edge triggered octal latches, which hold the 24-bit address. These latches are
reloaded at the start of each transfer, if they do not already contain the correct bit pattern. For localized
access, usually only one of these will need to be reloaded.

PAGE 358 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

The speed of the ROM interface is programmable by one of the system control registers, and will power
up to its slowest possible setting.

A read or write cycle on the ROM interface is preceded by between 0 and 3 ROM address latch update
cycles. Internal logic ensures that only the latches that need to be changed are written to, and this
improves performance. At the end of reset, all three latches are simultaneously loaded with zeroes.

This mode is the only mode available on Aries 2, but is only supported in the BGA package option for
Aries 3. In the QFP package, mode 2 should be used for bus type ROM/Flash memory.

ROM Interface signals
Signal Name Function Pins Active I/O Description
X_rom_d(0-7) DQ0-7 8 H IO Multiplexed address/data
X_rom_lat(0-
2)

3 L O ROM address latch controls

X_rom_cs_b CE# 1 L O ROM chip select
X_rom_we_b WE# 1 L O Write enable (for SRAM/FLASH)
X_rom_oe_b OE# 1 L O Output Enable

Warning: devices on the ROM Interface
In a non-standard Aries implementation with devices on the ROM interface that are not static memory,
problems may arise for the device detecting back to back cycles with no intervening address latch update
cycle. This situation can only occur from two successive byte transfers to the same address, and may not
matter. Suitable programming can avoid this situation. Please note that this will not be of concern when
only memory devices are present on this bus.

Mode 1 Operation
Mode 1 supports NAND flash memory, as used in SmartMedia cards, and can actually be used with
those cards if a socket is hooked up. Only memory devices of up to 16 Megabytes are supported. The
filing system used on SmartMedia cards is not compatible with the Aries boot process as the boot code
starts from the base of the memory. There is no hardware support for error detection or correction.

The timing of this interface is programmable as follows, where the control values are programmed in 54
MHz clock cycles. One should be subtracted from the desired value before programming it into the
corresponding register bits.
Parameter Range Function
flashTwp 1-16 flash write pulse width
flashTwh 1-16 flash hold time for control signals after we
flashTwb 1-64 flash delay from we rising to busy valid
flashTrr 1-64 flash read pre-charge from tRR and tAR2
flashTrp 1-16 flash read pulse width, and data valid time
flashTrh 1-16 flash hold time for control signals after re
flashTsu 1-16 flash setup time for re/we for special cycles
flashTsa 1-16 flash active time for re/we for special cycles
flashTsh 1-16 flash hold time after re/we for special cycles

ROM Interface signals
Signal Name Function Pins Active I/O Description
X_rom_d(0-7) I/O 1-8 8 H IO Multiplexed address/data

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 359

X_rom_lat(0) CLE 1 H O Command latch enable
X_rom_lat(1) ALE 1 H O Address latch enable
X_rom_lat(2) R/B# 1 H I Ready / Busy
X_rom_cs_b CE# 1 L O Chip select
X_rom_we_b WE# 1 L O Write enable
X_rom_oe_b RE# 1 L O Read enable

Mode 2 Operation
Mode 2 is functionally the same as mode 0, with the exception that the Flash memory / ROM is
connected to the system bus, and external ROM address latches are not required as the full address is
available.

In Mode 2 the ROM bus uses the same pins as the system bus, so software that makes use of both busses
at the same time will experience reduced performance due to bus sharing.

ROM Interface signals
Signal Name Function Pins Active I/O Description
X_sysd(0-7) DQ0-7 8 H IO Data bus
X_sysd(8-15) A0-A7 8 H O Least significant 8 bits of address
X_sysa(2-17) A8-A23 16 H O Most significant 16 bits of address
X_rom_cs_b CE# 1 L O ROM chip select
X_syswe WE# 1 L O Write enable (for SRAM/FLASH)
X_sysoe OE# 1 L O Output Enable

Mode 3 Operation
Mode 3 is functionally the same as mode 1, with the exception that the Flash memory / ROM is
connected to the system bus.

In Mode 3 the ROM bus uses the same pins as the system bus, so software that makes use of both busses
at the same time will experience reduced performance due to bus sharing.

ROM Interface signals
Signal Name Function Pins Active I/O Description
X_sysd(0-7) I/O 1-8 8 H IO Multiplexed address/data
X_sysd(8) CLE 1 H O Command latch enable
X_sysd(9) ALE 1 H O Address latch enable
X_gpio(12) R/B# 1 H I Ready / Busy
X_rom_cs_b CE# 1 L O Chip select
X_syswe WE# 1 L O Write enable
X_syswe RE# 1 L O Read enable

PAGE 360 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ROM Interface Read and Write Cycle timing

Mode 0 and 2

tCSL

ROM_OE_B

ROM_CS_B

this clock cycle is repeated
from 0 to 13 times

Write Cycle Read Cycle

SYSBCLK
for reference

read data ROM_D

ROM_WE_B

tRDSU

tOEL

tASV

tCSH

tOEH

tRDH

tCSL

this clock cycle is repeated
from 0 to 13 times

write data

tWEL

tWDV

tCSH

tWEH

tWDH

tDCO

ROM_ADDR
mode 2 only

tASI

valid address

tASV tASI

valid address

tRDZ

Figure 60

Read and write cycle timing is given relative to SYSBCLK as a point of reference, but note that this
interface is intended to be usable as an asynchronous interface, and there should be no need to use a
clock to connect a ROM or other static memory device.

Name Min (ns) Max (ns) Description
tCSL 2 6 Chip select falling edge referenced to System Bus clock
tCSH 2 6 Chip select rising edge referenced to System Bus clock
tOEL 2 6 Output enable falling edge referenced to System Bus clock
tOEH 2 6 Output enable rising edge referenced to System Bus clock
tWEL 2 6 Write enable falling edge referenced to System Bus clock
tWEH 2 6 Write enable rising edge referenced to System Bus clock
tASV 1 6 Address valid time referenced to System Bus clock
tASI 1 6 Address not valid time referenced to System Bus clock
tRDZ 1 6 Read cycle data bus float delay
tRDSU 3 Read cycle data bus setup time referenced to System Bus clock
tRDH 2 Read cycle data bus hold time referenced to System Bus clock
tDCO 0 Read cycle data hold time referenced to the earlier of either chip

select or output enable rising edge.
tWDV 1 6 Write cycle data valid delay referenced to System Bus clock
tWDH 1 6 Write cycle data hold time referenced to System Bus clock

All timings are provisional.

Mode 0 Address Latch timing.
Aries 3 and later

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 361

An address latch update cycle is two 54 MHz clock cycles long. Address latch update cycles may have a
programmable number of idle cycles before them, so that tri-state disable times for ROM (and other
memory devices) may be met before the address byte is presented on the data bus.

tAH

tLATW

tASU

address ROM_D[n]

ROM_LAT[n]

54 MHz clock
(internal)

Figure 61

Address latch cycle timing

Name Min (ns) Max (ns) Description
tLATW tCYC - 2 tCYC + 2 X_rom_lat[n] pulse width
tASU tCYC - 2 Address set up time before X_rom_lat rising edge
tAH tCYC - 2 Address hold time before X_rom_lat rising edge

tCYC is the 54 MHz clock period

All timings are provisional.

Aries 2 and earlier
An address latch update cycle is one 54 MHz clock cycle long. Address latch update cycles may have a
programmable number of idle cycles before them, so that tri-state disable times for ROM (and other
memory devices) may be met before the address byte is presented on the data bus.

tAH

tLATW

tASU

addressROM_D[n]

ROM_LAT[n]

54 MHz clock
(internal)

Figure 62

Address latch cycle timing

Name Min (ns) Max (ns) Description
tLATW (tCYC / 2) - 1 (tCYC / 2) + 1 X_rom_lat[n] pulse width
tASU (tCYC / 2) - 2 Address set up time before X_rom_lat rising edge
tAH (tCYC / 2) - 2 Address hold time before X_rom_lat rising edge

tCYC is the 54 MHz clock period

All timings are provisional.

PAGE 362 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Mode 1 and 3
NAND Flash timing can be configured to meet the timing requirements of most commercially available
memory devices. Please consult with VM Labs for the specific timing values required for a particular
manufacturer’s part.

Video Interface
Aries outputs video in an 8-bit synchronous data stream, and follows the CCIR 656 standard. The data is
formatted according to CCIR 601.

Aries includes an internal video timing generator. This timing generator can be free running as a master,
or can be synchronized to an external Sync source.

In broadcast applications with MPEG2 transport streams, or when it is necessary to mix Aries generated
graphics with analog video, external synchronization is necessary. This can be achieved by locking the
master Aries clock with the (typically 27 MHz) video master (extracted from the transport stream or the
composite video signal), and bringing the video counters into lock either external HSYNC and FIELD
signals, or from timing on the video input CCIR 656 stream.

The CCIR 656 output stream includes SAV and EAV codes, and conforms to the CCIR 656 standard.

X_vclk

X_vdata_(7-0)

TDO 37.0 nS

Name Min (ns) Max (ns) Description
tDO 15.0 21.0 VDATA[7:0] output delay referenced to VCLK rising edge

All timings are provisional.

Video Input Interface description
The video input interface conforms to the CCIR 656 interface specification, and should contain CCIR
601 data. Refer to these standards for more information.

X_viclk

X_vid_(7-0)

tVISU tVIH

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 363

Name Min (ns) Max (ns) Description
TVISU 6.0 Data bus setup time referenced to VICLK rising edge
TVIH 6.0 Data bus hold time referenced to VICLK rising edge

All timings are provisional

Audio Interface
The Aries audio interface supports up to eight discrete output channels, plus one IEC 958 (S/PDIF)
digital output, and a two stereo audio input interfaces.

Audio Clocking
The audio clock rate, and therefore the sample rate, is usually derived in an Aries 3 application from the
internal Audio PLL. It may also be derived from an external clock source. This clock is either output or
input on the pin X_aclk. This is divided to produce:

• SBCLK, the synchronous serial bit clock. This is 64, 48 or 32 times the sample rate.

• The IEC 958 output requires two edge positions per bit, and contains 64 bits per sample,
therefore requiring a clock 128 times the sample rate.

If an external DAC or ADC has a faster clock requirement (such as 256 times the sample rate), the
oscillator should be run at that speed, and the internal Aries pre-scaler used to give the required internal
clocks.

The audio clock control output, ACTL, can be configured as either a digital select line to multiplex
between two externally derived clocks, or as the output of a phase comparator to control an external
VCO. The incoming ACLK and the system master clock are both divided by programmable divide
chains to give the input to a phase comparator, whose output appears on the audio clock control output
pin ACTL.

PCM Audio Output description
The synchronous serial bit clock, SBCLK, which is derived from an external audio clock as described
below, controls audio output timing. One audio sample is then output every 16 or 24 SBCLK cycles, as
shown below. The word clock, SWCLK, whose polarity is programmable, gives the framing of the data.

Data is output on four data pins:

Pin Left function Right function
SDAT 0 Left Right
SDAT 1 Left surround Right surround
SDAT 2 Center Low frequency effects
GPIO(1) Left mix-down Right mix-down

Possible data output modes are as follows:

24-bit sample period, left = high SWCLK, right data alignment:

SDAT 0-2
Right ChannelLeft Channel

SWCLK

SBCLK

4 3 2 10 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

PAGE 364 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

24-bit sample period, left = high SWCLK, left data alignment:

SDAT 0-2
Left Channel Right Channel

SWCLK

SBCLK

4 3 2 1 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

24-bit sample period, left = high SWCLK, right data alignment, delayed data:

SDAT 0-2
Right ChannelLeft Channel

SWCLK

SBCLK

4 3 21 10 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

24-bit sample period, left = high SWCLK, left data alignment, delayed data:

SDAT 0-2
Right ChannelLeft Channel

SWCLK

SBCLK

4 3 2 1 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

16-bit sample period, left = high SWCLK, either data alignment:

SDAT 0-2
Left Channel Right Channel

SWCLK

SBCLK

4 3 2 1 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

16-bit sample period, left = high SWCLK, either data alignment, delayed data:

SDAT 0-2
Left Channel Right Channel

SWCLK

SBCLK

4 3 2 1 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

PCM Audio Output timing
An external device using SBCLK samples the audio outputs. Timing is therefore given with reference to
this clock as measured external to Aries.

tSDSU tSDH

SBCLK

SWCLK,
SDAT[n]

clkPolarity = 1clkPolarity = 0

tSDSU tSDH

Figure 63

Address latch cycle timing

Name Min (ns) Max (ns) Description
tSDSU (tACYC / 2) - 15 SWCLK and SDAT setup before SBCLK edge
tSDH (tACYC / 2) - 15 SWCLK and SDAT hold after SBCLK edge

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 365

tACYC is the audio clock period

All timings are provisional

S/PDIF (IEC 958) Audio Output description
The IEC 958 audio output channel is a serial, output-only, self-clocking interface. Refer to the IEC 958
Standard documentation for further details.

The output channel can operate in two modes:

• 16-bit mode, where the interface is provided with 16-bit audio values. The validity flag is
programmable, and the user data field is fixed at zero, for every sub-frame; and the first 32 bits
of channel status are programmable with the remaining bits being zero.

• 32-bit mode, where the interface is provided with 32-bit values corresponding to complete sub-
frames. The bits corresponding to the Sync Preamble and Parity are ignored as they are generated
by the hardware, but all other fields are programmable.

The output channel hardware formats the data according to the IEC 958 standard, and contains a block
counter so that it can correctly generate preambles. This counter can be reset.

When the IEC958 channel is enabled, the preScale value in the ssCtrl register should be set to give a
clock 128 times the sample rate. The SBCLK for the synchronous serial output should be set to a half or
a quarter of this rate with the bitScale value in the ssCtrl register. This rules out use of 24 bit
samples.

S/PDIF (IEC 958) Audio Output timing
TBD

Audio Input Description
Aries supports two stereo audio inputs over synchronous serial (I2S) interface. This interface is not
connected to the audio output channel, and so can be run at a different sample rate if required.

This interface supports the same set of serial data protocols as the transmitter, with some greater
flexibility. Left data alignment means that the receiver uses the first 16 bits that follow an edge on word
clock; right data alignment means that the receiver uses the 16 bits that precede an edge on word clock.
This means that the receiver does not care how long the period is between edges on word clock.

The receiver can also be programmed to accept data framing where the start or end of the data word is
some number of AI_BCLK cycles after the edge on AI_WCLK. This is referred to as delayed data
mode.

Left = high AI_WCLK, right data alignment:

AI_DAT
Right ChannelLeft Channel

AI_WCLK

AI_BCLK

4 3 2 10 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 1015

Left = high AI_WCLK, left data alignment:

PAGE 366 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

AI_DAT
Right ChannelLeft Channel

AI_WCLK

AI_BCLK

4 3 2 1 09 8 7 6 514 13 12 11 1015 4 3 2 1 09 8 7 6 514 13 12 11 10 1515

Delayed data relative to AI_WCLK cases are also handled, but are not illustrated here.

Audio Input Timing
The audio input channel can be configured as a timing master or slave. It defaults to being a slave,
where its timing is derived from an external source. However, it may also be a timing master. As a
master, it generates the bit and word clocks, and can also generate a higher frequency over-sample
clock, used by some ADCs and Codecs. This is available on one of the GPIO pins.

tAIDS tAIDH

AI_BCLK

AI_WCLK,
AI_DAT

clkPolarity = 0 clkPolarity = 1

tAIDS tAIDH

Figure 64

Audio input timing parameters

Name Min (ns) Max (ns) Description
tAIDS 20 AI_WCLK and AI_DAT setup before AI_BCLK edge
tAIDH 20 AI_WCLK and AI_DAT hold after AI_BCLK edge

Notes:

1. Timing applies to both audio input channels.

2. The clock polarity described here is the XOR of the clkPolarity and clkIntPol bits.

Controller Interface

Controller Interface description
The Controller Interface is used to interface with Controllers and other similar devices, including:

- Game-pad controllers
- Joysticks
- Keyboards
- Mice
- Memory cards
- 3D Glasses (e.g. LCD shutters)
- Modems
- Simple network interfaces

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 367

The interface to Controllers themselves consists of eight wires; power, ground, differential clock out,
differential data out and differential data in. There are two such interfaces, each with separate data
connections to Aries, although the clock is shared.

Controller Interface Timing

tCYC
tCLKH

tDOSU tDOH

CTLCLK

CTL_DI[n]

CTL_DO[n]

tDIJIT

Figure 65

Name Min (ns) Max (ns) Description
tCYC 74 ∞ Clock period
tCLKH (tCYC / 2) - 10 (tCYC / 2) + 10 Clock high time to show duty cycle variation
tDOSU (tCYC / 2) - 15 - CTL_DO setup before CTLCLK edge
tDOH (tCYC / 2) - 15 - CTL_DO hold after CTLCLK edge
tDIJIT tCYC - 18 tCYC + 18 Maximum jitter between the position of any data in edge in a

burst, expressed for one data value, but the jitter range is actually
relative to the start edge of the burst.

All timings are provisional

Coded Data Interface description
The Coded Data Interface is a programmable interface, responsible for conveying compressed data
streams to a designated MPE in the MMP system. Compressed data could be in the form of either audio
and video elementary streams or transport/program streams. The CDI presents a glueless interface to a
number of commercial transport stream demultiplexers, channel decoders and CD-DSPs. Application
layer video elementary stream data is carried over a byte-wide interface (most significant byte first) that
can be programmed as synchronous or asynchronous. Audio elementary stream data is either
multiplexed with video over the byte-wide interface, or carried over an independent bit-serial interface
(most significant byte/bit first). The bit-serial interface is also programmable as synchronous or
asynchronous. System level compressed data (transport streams and program streams) is carried over the
byte-wide interface. The different operating modes of the CDI are listed in the table below..

CDI_
config
(24-22)

Config
Audio

Config
Video

CVDATA/
CAPDAT
A
[7..0]

CVRE
Q

CVENAB/
CVSTROBE

CVCL
K

CASDATA/
CVERRFL
G

CAREQ/
CVTOP

CAENAB/
CASTROBE

CACL
K

000 Serial
Asynch

Asynch CVDATA √ STROBE DATA CAREQ STROBE

PAGE 368 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

001 Serial
Asynch

Synch CVDATA √ ENABLE √ DATA CAREQ STROBE

101 Serial
Synch

Asynch CVDATA √ STROBE DATA CAREQ ENABLE √

011 Serial
Synch

Synch CVDATA √ ENABLE √ DATA CAREQ ENABLE √

100 Parallel
Asynch

Asynch CVDATA/
CAPDATA
muxed

√ STROBE CAREQ STROBE

111 Parallel
Synch

Synch CVDATA/
CAPDATA
muxed

√ ENABLE √ CAREQ ENABLE (*1)

TS mode
Synch

 CVDATA ENABLE √ ERRFLG TOP (*2)

PS mode
Synch

 CVDATA √ ENABLE √ ERRFLG TOP

Table 21: Coded Data Interface Operating Modes

Notes:
*1: In the all-synchronous mode, audio and video interfaces share the same clock.

*2: This signal may or may not be present.

Coded Data Interface timing
The Coded Data Interface is designed to satisfy transport stream interface timing requirements outlined
in the DAVIC 1.1 A0 Specification. This allows the interface to handle sustained bit rates of up to 72
Mbits/s. For program streams and video/audio elementary streams, request-enable type of handshaking
allows data to be input in bursts of up to 16 bytes at a time. The interface is capable of handling CACLK
and CVCLK rates of up to 25 MHz. The relationships between different signals in different operating
modes are shown in the figures below.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

CACLK

CSADATA

CAENAB

CAREQ

Figure 66: Synchronous Serial Audio mode of Coded Data Interface

Synchronous Serial Audio Mode (rising edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.5 CASDATA setup time referenced to CACLK rising edge
tDH 2.0 CASDATA hold time referenced to CACLK rising edge
tENSU 4.5 CAENAB setup time referenced to CACLK rising edge
tENH 2.0 CAENAB hold time referenced to CACLK rising edge
tOUT 3.0 15.0 CAREQ output delay from CACLK rising edge

All timings are provisional.

Synchronous Serial Audio Mode (falling edge sampled)

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 369

Name Min (ns) Max (ns) Description
tDSU 4.5 CASDATA setup time referenced to CACLK falling edge
tDH 2.0 CASDATA hold time referenced to CACLK falling edge
tENSU 5.0 CAENAB setup time referenced to CACLK falling edge
tENH 2.0 CAENAB hold time referenced to CACLK falling edge
tOUT 3.0 15.0 CAREQ output delay from CACLK falling edge

All timings are provisional.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0CSADATA

CASTROBE

CAREQ

Figure 67: Asynchronous Serial Audio mode of Coded Data Interface

Asynchronous Serial Audio Mode (rising edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.5 CASDATA setup time referenced to CASTROBE rising edge
tDH 2.0 CASDATA hold time referenced to CASTROBE rising edge
tOUT 3.0 15.0 CAREQ output delay

All timings are provisional.

Asynchronous Serial Audio Mode (falling edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.5 CASDATA setup time referenced to CASTROBE falling edge
tDH 2.0 CASDATA hold time referenced to CASTROBE falling edge
tOUT 3.0 15.0 CAREQ output delay

All timings are provisional.

1 to 3 additional bytes can be received
after CVREQ deassertion

CVCLK

CVDATA[7..0] MS Byte

CVENAB

CVREQ

Figure 68: Synchronous Video mode of Coded Data Interface

Synchronous Video Mode (rising edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.0 CVDATA[7:0] setup time referenced to CVCLK rising edge

PAGE 370 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

tDH 3.0 CVDATA[7:0] hold time referenced to CVCLK rising edge
tENSU 2.0 CVENAB setup time referenced to CVCLK rising edge
tENH 2.0 CVENAB hold time referenced to CVCLK rising edge
tOUT 4.0 18.0 CVREQ output delay from CVCLK rising edge

All timings are provisional.

Synchronous Video Mode (falling edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.0 CVDATA[7:0] setup time referenced to CVCLK falling edge
tDH 3.0 CVDATA[7:0]hold time referenced to CVCLK falling edge
tENSU 3.0 CVENAB setup time referenced to CVCLK falling edge
tENH 2.5 CVENAB hold time referenced to CVCLK falling edge
tOUT 4.0 18.0 CVREQ output delay from CVCLK falling edge

All timings are provisional.

1 to 3 additional bytes can be received
after CVREQ deassertion

CVDATA[7..0] MS Byte

CVSTROBE

CVREQ

Figure 69: Asynchronous Video mode of Coded Data Interface

Asynchronous Video Mode (rising edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.0 CVDATA[7:0] setup time referenced to CVSTROBE rising edge
tDH 2.0 CVDATA[7:0] hold time referenced to CVSTROBE rising edge
tOUT 4.0 18.0 CVREQ output delay

All timings are provisional.

Asynchronous Video Mode (falling edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.0 CVDATA[7:0] setup time referenced to CVSTROBE falling edge
tDH 2.0 CVDATA[7:0] hold time referenced to CVSTROBE falling edge
tOUT 4.0 18.0 CVREQ output delay

All timings are provisional.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 371

1 to 3 additional bytes can be received
after CVREQ/CAREQ deassertion

CVCLK

CVDATA[7..0] Vid Byte

CVENAB

CAENAB

Vid Byte Aud Byte Vid Byte

CVREQ

Vid Byte Aud Byte

CAREQ

Figure 70: Synchronous multiplexed Parallel Video/Audio mode of Coded Data Interface

Synchronous multiplexed parallel video/audio Mode (rising edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.0 CVDATA[7:0] setup time referenced to CVCLK rising edge
tDH 3.0 CVDATA[7:0] hold time referenced to CVCLK rising edge
tVENSU 3.0 CVENAB setup time referenced to CVCLK rising edge
tVENH 3.0 CVENAB hold time referenced to CVCLK rising edge
tAENSU 3.0 CAENAB setup time referenced to CVCLK rising edge
tAENH 3.0 CAENAB hold time referenced to CVCLK rising edge
tVOUT 4.0 18.0 CVREQ output delay from CVCLK rising edge
tAOUT 3.0 15.0 CAREQ output delay from CVCLK rising edge

All timings are provisional.

Synchronous multiplexed parallel video/audio Mode (falling edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.0 CVDATA[7:0] setup time referenced to CVCLK falling edge
tDH 3.0 CVDATA[7:0] hold time referenced to CVCLK falling edge
tVENSU 3.0 CVENAB setup time referenced to CVCLK falling edge
tVENH 3.0 CVENAB hold time referenced to CVCLK falling edge
tAENSU 3.0 CAENAB setup time referenced to CVCLK falling edge
tAENH 3.0 CAENAB hold time referenced to CVCLK falling edge
tVOUT 4.0 18.0 CVREQ output delay from CVCLK falling edge
tAOUT 3.0 15.0 CAREQ output delay from CVCLK falling edge

All timings are provisional.

PAGE 372 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

1 to 3 additional bytes can be received
after CVREQ/CAREQ deassertion

CVDATA[7..0] Vid Byte

CVSTROBE

CASTROBE

Vid Byte Aud Byte Vid Byte

CVREQ

Vid Byte Aud Byte

CAREQ

Figure 71: Asynchronous multiplexed Parallel Video/Audio mode of Coded Data Interface

Asynchronous multiplexed parallel video/audio Mode (rising edge sampled)
Name Min (ns) Max (ns) Description
tVDSU 3.0 CVDATA[7:0] setup time referenced to CVSTROBE rising edge
tVDH 3.0 CVDATA[7:0] hold time referenced to CVSTROBE rising edge
tADSU 3.0 CVDATA[7:0] setup time referenced to CASTROBE rising edge
tADH 3.0 CVDATA[7:0] hold time referenced to CASTROBE rising edge
tVOUT 4.0 18.0 CVREQ output delay
tAOUT 3.0 15.0 CAREQ output delay

All timings are provisional.

Asynchronous multiplexed parallel video/audio Mode (falling edge sampled)
Name Min (ns) Max (ns) Description
tVDSU 3.0 CVDATA[7:0] setup time referenced to CVSTROBE falling edge
tVDH 3.0 CVDATA[7:0] hold time referenced to CVSTROBE falling edge
tADSU 3.0 CVDATA[7:0] setup time referenced to CASTROBE falling edge
tADH 3.0 CVDATA[7:0] hold time referenced to CASTROBE falling edge
tVOUT 4.0 18.0 CVREQ output delay
tAOUT 3.0 15.0 CAREQ output delay

All timings are provisional.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 373

CVCLK

CVDATA[7..0] MS Byte

CVENAB

CVERRFLG
(TS mode)

One PS Pack (2048 bytes)
or

one TS Packet (188 bytes)

Error Byte
(PS mode)

CVERRFLG
(PS mode)

CVTOP
(TS/PS modes)

Figure 72: Transport Stream/Program Stream modes of Coded Data Interface

Transport Stream/Program Stream Mode (rising edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.0 CVDATA[7:0] setup time referenced to CVCLK rising edge
tDH 3.0 CVDATA[7:0] hold time referenced to CVCLK rising edge
tVENSU 3.0 CVENAB setup time referenced to CVCLK rising edge
tVENH 3.0 CVENAB hold time referenced to CVCLK rising edge
tERRSU 3.0 CVERRFLG setup time referenced to CVCLK rising edge
tERRH 3.0 CVERRFLG hold time referenced to CVCLK rising edge
tTOPSU 3.0 CVTOP setup time referenced to CVCLK rising edge
tTOPH 3.0 CVTOP hold time referenced to CVCLK rising edge

All timings are provisional.

Transport Stream/Program Stream Mode (falling edge sampled)
Name Min (ns) Max (ns) Description
tDSU 3.0 CVDATA[7:0] setup time referenced to CVCLK falling edge
tDH 3.0 CVDATA[7:0] hold time referenced to CVCLK falling edge
tVENSU 3.0 CVENAB setup time referenced to CVCLK falling edge
tVENH 3.0 CVENAB hold time referenced to CVCLK falling edge
tERRSU 3.0 CVERRFLG setup time referenced to CVCLK falling edge
tERRH 3.0 CVERRFLG hold time referenced to CVCLK falling edge
tTOPSU 3.0 CVTOP setup time referenced to CVCLK falling edge
tTOPH 3.0 CVTOP hold time referenced to CVCLK falling edge

All timings are provisional.

PAGE 374 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Clocking and Reset

Description
The system is designed to be clocked from an internal 108 MHz PLL or external 108 MHz clock source.
The 108 MHz clock input is divided by four and output again on the PLL_REF signal, which is used for
frequency comparison with an external 27 MHz source. In normal operation the video clock, VCLK, is
the same as PLL_REF.

During power on reset, the system clocks run, so that PLL_REF, VCLK and SYSBCLK are all output
normally. VCLK is run in its default (27 MHz) speed. Power on reset should be applied with the main
clock input running for at least 24 main clock cycles. However, note that the power up mode selection
bits must also be settled on the rising edge of reset, and this may dictate longer reset pulses. These are
described under “Power Up Mode Selection” below.

The system reset input is active low, and a falling edge on this signal asynchronously resets the Aries
chip. When this signal is released, the trailing edge of the internal reset is held until a subsequent rising
edge of the internal clock to assure that the system starts cleanly.

Clock Timing

tCYC

tRISE tFALL

tCLKH

PLL_CLK

Figure 73

Name Min (ns) Max (ns) Description
tCYC 9.26 ∞ Clock period
tCLKH (tCYC / 2) - 1 (tCYC / 2) + 1 Clock high time to show duty cycle variation
tRISE 0 1 Clock rise time
tFALL 0 1 Clock fall time

All timings are provisional

Power Up Mode Selection
The power up mode of the Aries device is determined by bias resistors attached to the video output pins
VDATA(7:0). During reset, and for two clock cycles after the end of it these pins are not driven. One
clock cycle after the end of reset their state is latched within Aries, and used to configure the device with
parameters that cannot be set under software control. This allows a significant period for these signal
lines to settle, so a fairly large resistor can be used (probably 10 Kohms), which should have no effect
when these lines are outputs.

Power up configuration in the VDATA bus is as follows:

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 375

Aries revision Pins
 1 2 3

Function

7-5 ✓ ✓ ✓ Sets the Aries System Bus slave register address offset. The slave registers can
appear in one of 8 locations at 2 Mbyte offsets relative to the base address
decoded by CS. CS is assumed to decode a 16 Mbyte region, so address line 2 to
23 are decoded.
This allows up to 8 Aries devices to be present on the same System Bus, without
requiring them to contain different firmware.

4 unused
3 ✓ System Bus boot ROM mode – configures the ROM interface to use the System

Bus (see above under ROM interface
2 ✓ ✓ ✓ Test mode – must be pulled low.
1 ✓ Flash memory mode – configure the ROM interface to use a NAND flash bus (see

above under ROM interface).
0 unused

PAGE 376 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

ARIES 3 BUG LIST

This list contains all the known bugs in the Aries 2 silicon.

Last update 18 June 2001

Bug levels are:

0. A quirk that probably ought to be fixed.

1. This bug can be worked around in software without significant system overhead.

2. This bug can be worked round, but has a significant system impact.

3. This bug cannot be entirely worked around, and could mask further bugs.

MPE

Dcache freeze

Level 1
Description This bug can cause the MPE to freeze when a "load" access to a cacheable address results

in a dcache miss, and the immediately following instruction is a "load" or "store" access to
a non-cacheable address (including local MPE memory and registers).

Work-round The simplest workaround is to make sure that any ld from a cacheable address is not
immediately followed by a ld or st access to a non-cacheable address, inserting a nop if
necessary. The assembler will probably be updated so that it can warn about or
automatically fix this problem. Because it might become wasteful for the assembler to
assume that every indirect ld instruction is cacheable, there will likely need to be options
for finer control by user directives.

Date added Unchanged from the MMP-L3A

Icache overlay

Level 1
Description This bug can cause incorrect results if while running an Icached program, the MPE IRAM

is accessed by dma or by a ld/st instruction.
Work-round (a) The only workaround is to avoid any other access to the IRAM when an icached

program is running. This does not affect most normal uses of the MPE icache. I believe it
causes only a few esoteric restrictions: an icached program should not perform an explicit
dma to bring a code overlay into its own IRAM (a strange concept actually); while an MPE
is running an icached program, other processors should not dma into any part of that MPE's
IRAM; icached programs should not use dma command blocks in IRAM; and finally,
icached programs should not use ld/st to access IRAM (which, if you noticed the MPE's
Harvard-like architecture, you probably thought was impossible anyway).
(b) For the specific problem of how to move an MPE from icached execution to local
execution when all the IRAM is dedicated to the icache, there are a number of solutions.
Probably the most elegant is to dma a small program to DTRAM, then jump directly there
to execute it; that program can then dma some other code to the base of IRAM and jump
directly there, thus converting to local non-icache execution.

Date added Unchanged from the MMP-L3A

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 377

Main Bus DMA and data cache conflict

Level 1
Description If a data cache miss occurs while a Main Bus DMA is in progress, then the load instruction

can return invalid data. The correct data is in fact loaded into the cache line.
Work-round Do not use the data cache while performing Main Bus DMA.
Date added 4 October 1999

Data address breakpoints fail to trigger on some instruction forms

Level 1
Description Data-address-write-breakpoints will fail to trigger when the monitored location is written

by either of the instruction forms "st_s #nn,<labelC>" or "st_s #nnnn,<labelD>". (Note:
this is both the 32-bit and 64-bit forms of st_s with an immediate data value.)

Work-round
Date added 3 August, 2000

Main Bus DMA and SDRAM Interface

MPE Instruction Tags cannot be accessed using Main Bus DMA

Level 0
Description Main Bus DMA to the instruction tags causes a DMA exception
Work-round If you need DMA access, use the Other Bus
Date added Unchanged from the MMP-L3A

Vertical filtering of MPEG data does not filter chroma

Level 0
Description If you apply a vertical filter to MPEG data, and scale it up, you will sometimes notice a

blockiness in chroma. This is because only luma is filtered in this mode.
Work-round For static images, apply a software filter.
Date added January 30, 1999

VDG

Ringing artifacts from horizontal linear filter
Level 2
Description There is a bug in the VDG's linear horizontal filter, that is introducing ringing-like artifacts

in both natural MPEG image and synthetic color bars images. It is also possible that the
filter amplifies edge artifacts that occur during the encoding or decoding process and that
would normally be invisible.
This is what we have been able to confirm and verify:
- When a 528-pixel wide source is expanded to 720 pixels on the display, the video
firmware engages a linear four-tap filter. In certain areas of low or little variation in luma
and chroma (i.e., uniform color), faint vertical strips appear. These correspond to
macroblock edges (16 source pixels apart). In some cases, they correspond to block edges
(8 source pixels apart).

PAGE 378 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

- When we display a color bar image (synthetically created, so the luma and chroma in
each bar is EXACTLY uniform), expanding a 528-pixel source rectangle to 720 display
pixels, the vertical strips are quite evident in the magenta bar, less evident in the red bar,
and not evident in the other colors. The stripes do not appear when the filter is turned off
or if we use the custom four-tap filter.

Work-round a) Disable the horizontal filter altogether; here we suspect that the expanded image will not
look too pretty
b) Use the custom four-tap filter; In this case some images will exhibit real ringing (the
custom filter coefficients were designed for showing reduced images in a certain narrow
range).
c) Experiment with other scaling ratios. E.g. 528 to 720 pixel expansion shows the
problem, 528 to 704 expansion makes it far less visible,

Date added September 5, 2001

Communication Bus

Receive buffer full flag is set too soon
Level 0
Description The receive buffer full flag is set as soon as the first long word of data is received. This

means that the complete receive buffer register is not valid for a further three clock cycles.
Work-round Care should be taken when optimizing code to ensure that you don’t read the data until at

least three clock cycles after you have ascertained that there is data to be read. Interrupt
code is not affected as you can't get into an interrupt service routine that fast.

Date added Unchanged from the MMP-L3A

Other Bus

The Debug Controller is unable to do remote transfers on the Other Bus
Level 1
Description If the debug controller does an Other Bus transfer where the debugDmaData registers are

neither the source nor the destination of the transfer, then the Other Bus Transfer Pending
flag is never cleared.

Work-round Use an MPE to perform the transfer.
Date added January 21, 1999

GENERAL IO

The debug controller cannot do two long-word DMA transfers on the Other Bus
Level 1
Description Other Bus read transfers of length two do not work for the debug controller. The second

long-word of data is incorrect. Length two transfers work fine for Other Bus writes, and for
all Main Bus transfers.

Work-round Other Bus read transfers should be restricted to one long-word.
Date added March 3, 1999

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 379

Debug Controller

Soft resets do not work unless booting from the ROM bus as Aries 2
Level 2
Description When a software generated reset happens because a one was written to the debug_reset bit

in the debugCtrl register, the bits that control where Aries 3 boots from are reset to zero,
which only works if the chip is booting from normal bus ROM/Flash on the ROM bus , as
in Aries 2 and below.

Work-round Add external circuitry to generate a soft reset when a GPIO pin is driven.
Date added October 19, 2001

I2C Interface

There is no comminfo data on packets sent by the I2C controller
Level 0
Description Software cannot tell what a packet sent by the I2C controller is in response to. This makes

it hard to operate the master and slave independently unless communication bus reads
block.

Work-round Reads have to wait for the response.
Date added June 19, 2001

Audio Interface

FIFO underflow prevention is broken

Level 1
Description The preventFifoUnderflow has an incorrect test, and prevents audio output from working at

all when set.
Work-round Do not use this function. Underflow should never occur if DMA is set up properly.
Date added October 12, 2001

Audio In is turned on at reset

Level 0
Description As it comes out of reset, the audio in channel may send one packet to MPE 0 shortly after

reset.
Work-round Boot ROMs created after 28 Jan 98 contain appropriate code to fix this. The code that fixes

Oz will also work for Aries
Date added Carried over from the MMP-L3A. Only sends one packet in Aries 3.

Top and Error flags from audio input channel 2 to the CDI are swapped

Level 1
Description The Top and Error flags captured on audio input channel 2 and passed to the CDI are

PAGE 380 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

reversed. This means the signal captured on X_casdata is passed to the CDI as top, and the
signal captured on X_careq is passed to the CDI as error.
This affects systems capturing data on audio input channel 2, and also capturing errors or
framing flags on this channel, when the data is passed through to the CDI.

Work-round These signals should be swapped externally, and if the data is also sometimes received
directly from the audio input channel, then the software should be changed to reverse the
convention in the documentation, i.e. to:
6-7 right flag (or error) data
8-9 right sync (or top) data
10-11 left flag (or error) data
12-13 left sync (or top) data

Date added October 11, 1999

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 381

MMP-L3C (ARIES 2) BUG LIST

This list contains all the known bugs in the Aries 2 silicon.

Last update 11 October 1999

Bug levels are:

4. A quirk that probably ought to be fixed.

5. This bug can be worked around in software without significant system overhead.

6. This bug can be worked round, but has a significant system impact.

7. This bug cannot be entirely worked around, and could mask further bugs.

MPE

Dcache freeze

Level 1
Description This bug can cause the MPE to freeze when a "load" access to a cacheable address results

in a dcache miss, and the immediately following instruction is a "load" or "store" access to
a non-cacheable address (including local MPE memory and registers).

Work-round The simplest workaround is to make sure that any ld from a cacheable address is not
immediately followed by a ld or st access to a non-cacheable address, inserting a nop if
necessary. The assembler will probably be updated so that it can warn about or
automatically fix this problem. Because it might become wasteful for the assembler to
assume that every indirect ld instruction is cacheable, there will likely need to be options
for finer control by user directives.

Date added Unchanged from the MMP-L3A

Icache overlay

Level 1
Description This bug can cause incorrect results if while running an Icached program, the MPE IRAM

is accessed by dma or by a ld/st instruction.
Work-round (a) The only workaround is to avoid any other access to the IRAM when an icached

program is running. This does not affect most normal uses of the MPE icache. I believe it
causes only a few esoteric restrictions: an icached program should not perform an explicit
dma to bring a code overlay into its own IRAM (a strange concept actually); while an MPE
is running an icached program, other processors should not dma into any part of that MPE's
IRAM; icached programs should not use dma command blocks in IRAM; and finally,
icached programs should not use ld/st to access IRAM (which, if you noticed the MPE's
Harvard-like architecture, you probably thought was impossible anyway).
(b) For the specific problem of how to move an MPE from icached execution to local
execution when all the IRAM is dedicated to the icache, there are a number of solutions.
Probably the most elegant is to dma a small program to DTRAM, then jump directly there
to execute it; that program can then dma some other code to the base of IRAM and jump
directly there, thus converting to local non-icache execution.

Date added Unchanged from the MMP-L3A

PAGE 382 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Main Bus DMA and data cache conflict

Level 1
Description If a data cache miss occurs while a Main Bus DMA is in progress, then the load instruction

can return invalid data. The correct data is in fact loaded into the cache line.
Work-round Do not use the data cache while performing Main Bus DMA.
Date added 4 October 1999

Data address breakpoints fail to trigger on some instruction forms

Level 1
Description Data-address-write-breakpoints will fail to trigger when the monitored location is written

by either of the instruction forms "st_s #nn,<labelC>" or "st_s #nnnn,<labelD>". (Note:
this is both the 32-bit and 64-bit forms of st_s with an immediate data value.)

Work-round
Date added 3 August, 2000

Main Bus DMA and SDRAM Interface

MPE Instruction Tags cannot be accessed using Main Bus DMA

Level 0
Description Main Bus DMA to the instruction tags causes a DMA exception
Work-round If you need DMA access, use the Other Bus
Date added Unchanged from the MMP-L3A

Vertical filtering of MPEG data does not filter chroma

Level 0
Description If you apply a vertical filter to MPEG data, and scale it up, you will sometimes notice a

blockiness in chroma. This is because only luma is filtered in this mode.
Work-round For static images, apply a software filter.
Date added January 30, 1999

Communication Bus

Receive buffer full flag is set too soon
Level 0
Description The receive buffer full flag is set as soon as the first long word of data is received. This

means that the complete receive buffer register is not valid for a further three clock cycles.
Work-round Care should be taken when optimizing code to ensure that you don’t read the data until at

least three clock cycles after you have ascertained that there is data to be read. Interrupt
code is not affected as you can't get into an interrupt service routine that fast.

Date added Unchanged from the MMP-L3A

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 383

Other Bus

The Debug Controller is unable to do remote transfers on the Other Bus
Level 1
Description If the debug controller does an Other Bus transfer where the debugDmaData registers are

neither the source nor the destination of the transfer, then the Other Bus Transfer Pending
flag is never cleared.

Work-round Use an MPE to perform the transfer.
Date added January 21, 1999

GENERAL IO

The debug controller cannot do two long-word DMA transfers on the Other Bus
Level 1
Description Other Bus read transfers of length two do not work for the debug controller. The second

long-word of data is incorrect. Length two transfers work fine for Other Bus writes, and for
all Main Bus transfers.

Work-round Other Bus read transfers should be restricted to one long-word.
Date added March 3, 1999

The I2C controller cannot send a start code in the middle of a transfer
Level 1
Description If you send a byte with type xmitStart in the middle of a transfer, the controller will hang

and nothing will be sent. The only supported sequence is start bit, transmitted and received
bytes, then a stop bit.

Work-round Bit-bang the I2C to achieve other modes.
Date added September 9, 2000

System Bus Interface

The read addresses for External Host Interrupt Control and Status are swapped

Level 1
Description The read addresses for the External Host Interrupt Control register and the External Host

Interrupt Status register are reversed.
Work-round Write to the External Host Interrupt Control register at offset $14 and read it at offset $18.

Read to the External Host Interrupt Status register at offset $14.
Date added November 18, 1998

Audio Interface

Audio In is turned on at reset

Level 0
Description As it comes out of reset, the audio in channel may send one packet to MPE 0 shortly after

reset.
Work-round Boot ROMs created after 28 Jan 98 contain appropriate code to fix this. The code that fixes

PAGE 384 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Oz will also work for Aries
Date added Carried over from the MMP-L3A. Only sends one packet in the MMP-L3B.

Top and Error flags from audio input channel 2 to the CDI are swapped

Level 1
Description The Top and Error flags captured on audio input channel 2 and passed to the CDI are

reversed. This means the signal captured on X_casdata is passed to the CDI as top, and the
signal captured on X_careq is passed to the CDI as error.
This affects systems capturing data on audio input channel 2, and also capturing errors or
framing flags on this channel, when the data is passed through to the CDI.

Work-round These signals should be swapped externally, and if the data is also sometimes received
directly from the audio input channel, then the software should be changed to reverse the
convention in the documentation, i.e. to:
6-7 right flag (or error) data
8-9 right sync (or top) data
10-11 left flag (or error) data
12-13 left sync (or top) data

Date added October 11, 1999

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 385

MMP-L3B (ARIES 1) BUG LIST

This list contains all the known bugs in the Aries silicon.

Last update 11 October 1999

MPE

Dcache freeze

Level 1
Description This bug can cause the MPE to freeze when a "load" access to a cacheable address results

in a dcache miss, and the immediately following instruction is a "load" or "store" access to
a non-cacheable address (including local MPE memory and registers).

Work-round The simplest workaround is to make sure that any ld from a cacheable address is not
immediately followed by a ld or st access to a non-cacheable address, inserting a nop if
necessary. The assembler will probably be updated so that it can warn about or
automatically fix this problem. Because it might become wasteful for the assembler to
assume that every indirect ld instruction is cacheable, there will likely need to be options
for finer control by user directives.

Date added Unchanged from the MMP-L3A

Icache overlay

Level 1
Description This bug can cause incorrect results if while running an Icached program, the MPE IRAM

is accessed by dma or by a ld/st instruction.
Work-round (a) The only workaround is to avoid any other access to the IRAM when an icached

program is running. This does not affect most normal uses of the MPE icache. I believe it
causes only a few esoteric restrictions: an icached program should not perform an explicit
dma to bring a code overlay into its own IRAM (a strange concept actually); while an MPE
is running an icached program, other processors should not dma into any part of that MPE's
IRAM; icached programs should not use dma command blocks in IRAM; and finally,
icached programs should not use ld/st to access IRAM (which, if you noticed the MPE's
Harvard-like architecture, you probably thought was impossible anyway).
(b) For the specific problem of how to move an MPE from icached execution to local
execution when all the IRAM is dedicated to the icache, there are a number of solutions.
Probably the most elegant is to dma a small program to DTRAM, then jump directly there
to execute it; that program can then dma some other code to the base of IRAM and jump
directly there, thus converting to local non-icache execution.

Date added Unchanged from the MMP-L3A

Main Bus DMA and data cache conflict

Level 1
Description If a data cache miss occurs while a Main Bus DMA is in progress, then the load instruction

can return invalid data. The correct data is in fact loaded into the cache line.
Work-round Do not use the data cache while performing Main Bus DMA.
Date added 4 October 1999

PAGE 386 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Main Bus DMA and SDRAM Interface

MPE Instruction Tags cannot be accessed using Main Bus DMA

Level 0
Description Main Bus DMA to the instruction tags causes a DMA exception
Work-round If you need DMA access, use the Other Bus
Date added Unchanged from the MMP-L3A

Vertical filtering of MPEG data does not filter chroma

Level 0
Description If you apply a vertical filter to MPEG data, and scale it up, you will sometimes notice

blockiness in chroma. This is because only luma is filtered in this mode.
Work-round For static images, apply a software filter.
Date added January 30, 1999

Vertical filtering of progressive MPEG data with down-scaling is wrong

Level 2
Description When vertically scaling progressive data for interlaced output, and you are scaling down,

e.g. letterbox mode, the hardware chooses the wrong lines and wrong filter coefficients.
Work-round 1. Telling the filter the source is interlaced helps a little

2. Reprogramming the filters and DMA on a line-by-line basis.
Date added July 6, 1999

Video Output can be shifted right by 16 pixels
Level 0
Description Video can sometimes be starved for data, resulting in a 16-pixel right shift.

It is not a real bug, in that it something that is behaving as designed but in pathological
cases can result in very long delays for high priority dma data. It is a consequence of an
attempt to optimize accesses to memory by prioritizing first requests that use the same
RAS and then requests that use the other bank of memory to enable hidden pre-charging.

Work-round The best fix for video is to issue video DMAs that are 1 line longer than required and then
flush the FIFOs and drain the main channel (as we do now). If we don't issue longer DMAs
there could be visible bad pixels in the bottom right portion of the image (16 pixels max).
All this also applies for overlays.

Date added July 6, 1999

Communication Bus

Receive buffer full flag is set too soon
Level 0
Description The receive buffer full flag is set as soon as the first long word of data is received. This

means that the complete receive buffer register is not valid for a further three clock cycles.
Work-round Care should be taken when optimizing code to ensure that you don’t read the data until at

least three clock cycles after you have ascertained that there is data to be read. Interrupt
code is not affected as you can't get into an interrupt service routine that fast.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 387

Date added Unchanged from the MMP-L3A

The Comm Bus arbiter can stream I2C packets and drop CDI data
Level 2
Description There is an error in the Comm Bus arbiter that means that if the CDI requests the Comm

Bus while the I2C owns the Comm Bus, the bus is wrongly granted to the I2C instead of
the CDI. This has the effect that the I2C will get stuck in a loop streaming Comm Bus
packets corresponding to the read command until somebody else requests the Comm Bus.
While stuck in this loop the CDI cannot transmit data so CDI data may be lost.

Work-round There are two possibilities:
1. Immediately follow all I2C reads with an I2C write, with hardware retries enabled.

This guarantees that the write will complete after the read, and will pull the arbiter out
of the loop. At least one spurious extra read packet may still be transmitted.

2. Detect the error condition arising (un-requested I2C packet) and immediately send any
Comm Bus packet, e.g. send yourself one.

Date added June 3, 1999

Other Bus

The Debug Controller is unable to do remote transfers on the Other Bus
Level 1
Description If the debug controller does an Other Bus transfer where the debugDmaData registers are

neither the source nor the destination of the transfer, then the Other Bus Transfer Pending
flag is never cleared.

Work-round Use an MPE to perform the transfer.
Date added January 21, 1999

GENERAL IO

General IO register reads may conflict with Serial Device Bus input data
Level 1
Description If a register within the General IO section is read while serial device is being sent over the

Comm Bus, then packets can get lost, and data can be corrupted.
The effect is that if the response to a register read occurs at the same time as a Serial
Device Bus read packet a collision occurs and only one packet is sent. This packet is a
hybrid of the two in that:
- it contains the read data of the register read, including address and status
- it is sent to the target of the Serial Device Bus read

Work-round Do not read any General IO registers while Serial Device Bus reads are active.
If you cannot avoid doing this, then make sure that only one MPE is responsible for both
the register reads and the Serial Device Bus data. Then you only need to write your code so
that lost packets from the Serial Device Bus can be handled. You will need to do that
anyway.

Date added October 16, 1998

The debug controller system reset and watchdog functions do not reset the MPEs
Level 1
Description The System Reset flag, and watchdog function, in the debug controller module do not reset

the MPEs. They only reset the rest of the system. This makes them essentially useless.

PAGE 388 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Work-round System resets can be performed externally, e.g. by hooking a GPIO pin into the reset
circuit. The watchdog function could also be implemented externally.

Date added February 9, 1999

The debug controller cannot do two long-word DMA transfers on the Other Bus
Level 1
Description Other Bus read transfers of length two do not work for the debug controller. The second

long-word of data is incorrect. Length two transfers work fine for Other Bus writes, and for
all Main Bus transfers.

Work-round Other Bus read transfers should be restricted to one long-word.
Date added March 3, 1999

The I2C slave cannot flag that it is empty to an external master
Level 1
Description If the I2C slave is empty, i.e. slaveTxCount is four, a read address will still be

acknowledged, but the master will read $FF in all byte positions.
Similarly, for writes, the write address will be acknowledged, but in this case the write
bytes will not be acknowledged.

Work-round When the transmit buffer empties, you could change the slave address so that future
transfers are not acknowledged.

Date added April 7, 1999

System Bus Interface

The read addresses for External Host Interrupt Control and Status are swapped

Level 1
Description The read addresses for the External Host Interrupt Control register and the External Host

Interrupt Status register are reversed.
Work-round Write to the External Host Interrupt Control register at offset $14 and read it at offset $18.

Write to the External Host Interrupt Status register at offset $18 and read it at offset $14.
Date added November 18, 1998

The host reset function does not work

Level 1
Description The reset bit in bit 1 of the hostIntReq register in the external host register space has no

effect.
Work-round Use external reset hardware, or the reset function in the debug controller if available.
Date added December 4, 1998

Data transfers can be corrupted in the chip select address spaces

Level 1
Description During ODMA writes to SRAM/ROM space on the systembus, if the Other Bus

controller holds up the transfer for >= cs_length, wrong data will be written to the slave
device. The logic will also return wrong data during ODMA reads from SRAM/ROM
space if the controller holds off the transfers.

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 389

This is not a problem for single transfer dma cycles (because there is no
Hold off).

Work-round Two options:
1. Program the CS length to at least 5 clock cycles. A hold off longer than that can not

occur in MPE / System Bus transfers.
2. Force single long word DMA transfers. This is not really practicable.

Date added April 14, 1999

Audio Interface

The dataDelay flag for audio out delays by the wrong clock

Level 1 – hardware only
Description If the dataDelay bit is set in the audio output section, audio output data is delayed by one

audio_clk cycle and not by one X_sbclk cycle as it should be (see the clock section in the
audio output description). This makes it only useful if bitScale is set to divide by one.

Work-round Do not use DACs that require this function – all the DACs we have used so far will work
fine.

Date added September 29, 1998

Audio In is turned on at reset

Level 0
Description As it comes out of reset, the audio in channel may send one packet to MPE 0 shortly after

reset.
Work-round Boot ROMs created after 28 Jan 98 contain appropriate code to fix this. The code that fixes

Oz will also work for Aries
Date added Carried over from the MMP-L3A. Only sends one packet in the MMP-L3B.

Audio register reads may conflict with audio input data

Level 1
Description If a register within the audio section is read while audio input is being streamed over the

Communication Bus, then packets can get lost, and data can be corrupted.
Work-round Do not read any audio registers while audio input is active.
Date added October 16, 1998

Audio input clock polarity is not programmable in master mode

Level 1
Description When the audio input is acting as a timing master, with its bit and word clocks as outputs,

the bit clock polarity is always rising edge for capture.
Work-round Operate the interface in slave mode. It will usually make sense to use the audio output

channel bit and word clocks, with both the ADC and the MMP-L3B audio inputs acting as
slaves.

Date added November 2, 1998

PAGE 390 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. REVISION 26

Top and Error flags from audio input channel 2 to the CDI are swapped

Level 1
Description The Top and Error flags captured on audio input channel 2 and passed to the CDI are

reversed. This means the signal captured on X_casdata is passed to the CDI as top, and the
signal captured on X_careq is passed to the CDI as error.
This affects systems capturing data on audio input channel 2, and also capturing errors or
framing flags on this channel, when the data is passed through to the CDI.

Work-round These signals should be swapped externally, and if the data is also sometimes received
directly from the audio input channel, then the software should be changed to reverse the
convention in the documentation, i.e. to:
6-7 right flag (or error) data
8-9 right sync (or top) data
10-11 left flag (or error) data
12-13 left sync (or top) data

Date added October 11, 1999

BDU

Last Block Element Truncation “White Dots Bug”

Level 2
Description This bug occurs when the last element of a block is negative, but small enough that it will

be truncated to zero by the inverse quantization, and even parity. In this case the pipeline
propagates the value as a 'negative zero' which is taken by the mismatch control as a
negative even value as opposed to a positive even value, i.e. it subtracts one instead of
adding one to the last block element, which totally messes up the idct.

Work-round None
Date added July 6, 1999

VDG
These first two bugs were fixed before production started in Aries 1.1, and are included here only for
reference.

Video clock relationship to video data is not defined – FIXED IN ARIES 1.1
Level 1 – hardware
Description The video output can start up in one of two phases relative to the video output clock, either

correctly, or where data and clock rising edge coincide.
Work-round A small delay on video clock (ideally one quarter-cycle) will provide enough setup and

hold to work with the current video encoder.
Date added December 1, 1998

Sub-picture not work at some horizontal alignments – FIXED IN ARIES 1.1
Level 3
Description The "startsub" signal, which is fixed to be 100 ticks before "SubHstart", stops incrementing

"pix_pos". "pix_pos" will then stop incrementing and hold its last value until the next
"left edge". Normally this will be OK if the PXD window is aligned to the left of the

REVISION 26 PROPRIETARY AND CONFIDENTIAL TO VM LABS, INC. PAGE 391

screen. But if we move PXD to the right, eventually "startsub" will occur after "left_edge",
which will stop the pix_pos from counting and hence mess up the change color commands.

Work-round None
Date added December 1, 1998

