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QUANTUM DOTS (QDS) HAVE ATTRACTED SIGNIFICANT 
interest as a new material for display applications. Light-emitting 
QDs are nanometer-sized semiconductor particles that generally 
exhibit a narrow emission spectrum with high internal quantum 
efficiency. These unique properties allow QDs to create a wide 
color gamut (WCG) and low power consumption when used 
in displays. With this in mind, we expect to see QD materials’ 
technical application for displays evolve in three major steps 
(Fig. 1). The first step, which began in 2013, is QD backlights 
for liquid crystal displays (LCDs), where QD sheets are used as 
wavelength-converting materials to achieve pure RGB white 
light. The second step, which began in 2022, is the direct-pixel 
color-conversion method, which converts blue light wavelengths 
into green and red ones for each pixel in a display. This mainly 
is being developed in combination with organic light emitting 
diode (OLED) displays, known as QD-OLED displays. The final 
step is the self-emissive method of QDs by current injection 
(hereinafter referred to as nanoLED, as the light-emitting diode 
structure created using nanoparticles), which is expected as a 
next-generation display that could replace OLED displays.

The technology up to step 2 has been put into practical use, 
whereas the technology of step 3 is still in the research and 
development (R&D) stage. As a strong candidate for next-gen-
eration displays, we focus on the nanoLED, in which red, green, 
and blue (RGB)-emitting layers are patterned directly by photoli-
thography. In this article, we describe the potential applications 
of nanoLEDs from the perspective of technology and market 
demand. We also explore the latest developments and chal-
lenges for realizing nanoLED.

Compatibility Between Technology and 
Market Demand
Most of the display methods attracting attention as state-of-
the-art technologies have limited applicable products because 
of manufacturing limitations, such as the ability to make very 
tiny pixels with high efficiency, very high brightness displays, and 
the need to use large mother glass-based processes to achieve 
low unit cost (Table 1).

OLEDs are the only self-emissive displays that widely have 
penetrated the market. They are gaining recognition for their 
high contrast ratio, thinness, and compatibility with flexible sub-
strates, which are more suited to self-emissive displays. OLEDs 
broadly are classified into two technologies according to their 
colorization methods. The first method is direct patterning of 
RGB emission layers onto each subpixel, where each emitting 
layer is formed by deposition using a fine metal mask (FMM), or 
RGB-OLED. The other method is a technology that combines a 
white OLED layer and color filters (WOLED). Instead of pattern-
ing the light-emitting layer for each RGB subpixel, a WOLED 
layer is formed as a common layer, and color filters are formed 
for each subpixel to achieve colorization.

RGB-OLED is the most widely applied technology. Because RGB 
direct patterning loses less energy, RGB-OLEDs are mainly used in 
wearable devices, smartphones, tablet PCs, and laptop PCs, where 
performance at low power consumption is important. However, 
RGB-OLEDs cannot be easily applied to TVs, which require a large 
screen, or augmented and virtual reality (AR/VR) devices, which 
require ultrahigh resolution, because of the FMM’s size and reso-
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lution limitation. WOLEDs are applied in such instances.
The configurations of these displays are different. WOLEDs 

for large displays are driven by thin-film transistor (TFT) back-
plane substrates consisting of indium gallium zinc oxide (IGZO), 
while ultrahigh-resolution WOLEDs are driven by silicon com-
plementary metal-oxide semiconductor (CMOS) TFT substrates. 
Also, the OLED element configuration for emitting white light 
differs between the two methods. Depending on the colorization 
method, both large-size and high-resolution OLEDs are defined 
as the same WOLEDs in this article. WOLEDs have no size nor 
resolution restrictions due to the FMM. However, power effi-
ciency due to light absorption loss at the color filter and reduction 
of color gamut due to leakage of undesired wavelengths from the 
color filter are issues. For these reasons, WOLEDs are used only 
for large displays such as TVs or ultrahigh-resolution displays for 
AR/VR, wherein RGB-OLEDs are not applicable.

LCDs with QD backlight 
have been applied primar-
ily in TVs and monitors. QD 
backlight has contributed to 
great improvements in color 
purity. Furthermore, in recent 
years, the combination of QD 
and miniLED backlights have 
enabled reductions in the total 
thickness of displays, so it also 
is being applied to some lap-
tops and tablet PCs. MiniLED 
backlights contain thousands 

of blue LEDs with a size of several hundred micrometers. By indi-
vidually controlling the luminance of these blue LEDs, it is possible 
to greatly improve the contrast ratio, which has been considered 
a weakness of LCDs. In addition, when combined with a QD 
sheet, this approach is superior to conventional LCDs in terms 
of expanding the color gamut. Because of these advantages, it is 
expected to be widely used in laptops and tablet PCs in the near 
future. However, the thickness of miniLED-based displays is still 
too large for smartphones and wearable devices.

QD-OLED TVs and monitors were introduced to the market 
in 2022. Their WCG and wide viewing angle performance have 
been well received, and further applications are expected. 
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*The green bars show applicable product range.

Table 1. 
Compatibility between technology and market demand.*

Fig. 1. 
Evolution steps of quan-
tum-dot (QD) displays. TFT: 
thin-film transistor.
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However, its application may be limited to products with larger 
screen sizes without further advances. The current approach to 
QD-OLEDs requires a relatively thick QD layer of ~10 μm to 
efficiently absorb light emitted from the blue OLED layers and 
convert it into green and red. QD color-conversion layers are 
patterned separately by inkjet for each red and green subpixel, 
but the resolution of the QD-OLED currently is limited to ~200 
ppi because of the accuracy of the inkjet patterning. In addition 
to the low power efficiency of blue OLED, the QD-OLED has 
an energy loss of the QD color-conversion layer, so energy 
efficiency remains an opportunity for improvement.

NanoLEDs, sometimes called electroluminescent quantum 
dot (QD-EL) or QD-LED, are expected to be the next genera-
tion of technology that achieves superior performance—high 
luminance, WCG, and high contrast ratio—for displays. The 
manufacturing method will determine the product coverage of 
nanoLEDs. Several methods have been proposed for manufac-
turing nanoLED based on the QD patterning technology (Fig. 2).

Inkjet printing is a major deposition process in which QDs’ 
ink is dispensed to the target position. The required droplet size 
can be minimized, leading to a reduction of cost with QD ink. 
This method has a strong advantage. There have been several 
demonstrations of nanoLED patterns using inkjet printing,1–3 

but some issues are present with high-resolution patterning. 
As a result, the application of inkjet-printed nanoLEDs will be 
limited to TVs and monitors, similar to QD-OLEDs, where QDs 
as color-conversion layers are patterned in the same way.

Photolithography also is a promising technique for QD pat-
terning at high resolution based on two methods. One uses 
photoresist material, which reacts to UV light to form an insoluble 
matrix; the other is called the lift-off method, where the photo-
resist first is patterned, QDs are deposited, then the photoresist 
pattern is removed with QDs. Both methods have been used 
for nanoLEDs.2–8 Manufacturing nanoLEDs by photolithography 
is more difficult than inkjet printing because of damage to QDs 
during the process. However, if a process technology based on 
photolithography can be established, it would have a significant 
advantage. Photolithography is the most widely used method 

for manufacturing electronic 
devices, including LCDs, and it 
is expected to be applicable—
from high-resolution small 
displays to large displays—
without technical limitations, 
similar to LCDs.

Facilitating 
Developments in 
NanoLED Displays
Recently, advances in mate-
rials and process technology 
have enabled several display 
manufacturers to develop 
active-matrix (AM) nanoLED 
displays. TCL introduced a 
32-inch AM hybrid display 

using red and green nanoLEDs combined with blue OLED.3 
BOE demonstrated a 55-inch AM display using RGB nanoLED.4 
Samsung Display fabricated a 6.95-inch AM display using RGB 
nanoLEDs composed of cadmium (Cd)-free QDs.5 Cd-containing 
QDs show excellent luminous performance, but Its toxicity has 
been suggested to have adverse effects on the environment. The 
successful development of a display using Cd-free QDs would 
be a significant achievement toward the practical application 
of nanoLEDs. Each of these AM displays were manufactured 
using inkjet printing.

There are few reports on the development of AM nanoLED 
displays using photolithography, which is technically challenging. 
Recently, we reported on the successful fabrication of a 6.2-
inch AM nanoLED display using all Cd-free QDs patterned by 
photolithography6 (Fig. 3). We also demonstrated the utility of 
ultrahigh resolution, one of the features of photolithography.7 

Fig. 4 shows experimental results of high-resolution patterning of 
nanoLEDs using a passive-matrix test cell on a Si wafer. Despite 
the ultrahigh resolution of 3,994-ppi, RGB emissions are observed 
without crosstalk. This is the highest-resolution self-emissive 
device created by separately painting red, green, and blue.
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Fig. 2. 
Schematic illustrations of 
the patterning methods 
being considered for 
nanoLED displays.

Fig. 3. 
Full-color image display of a 6.2-inch Cd-free nanoLED patterned 
by photolithography.
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Challenges for Realizing NanoLED Displays
NanoLED technology has shown steady improvement in recent 
years, but further evolution is necessary for its practical appli-
cation. To realize nanoLEDs, the most important challenge is to 
improve the performance of QD materials. Until recently, the 
most-efficient QD-LED devices used QDs composed primarily 
of cadmium selenide (CdSe).8 Cadmium is extremely limited 
under the Restrictions of Hazardous Substances (RoHS) reg-
ulation, making it impractical to use Cd-based QDs in display 
applications. Consequently, alternative non-toxic QD materials, 
such as indium phosphide (InP),9–27 zinc selenide (ZnSe), zinc 
selenium telluride (ZnSeTe),18,22,10-32 and others, are under con-
sideration for nanoLED devices.

Fig. 5 shows the progress of nanoLED efficiency and lifetime 
using Cd-free QDs, making tremendous strides in the past five 
years (Fig. 5a). The highest efficiency of red nanoLED using 
InP QD reached more than 20 percent,17,19,21,22 and green nan-
oLED has reached 17.6 percent.18 InP cannot be used to realize 
blue-emitting nanoLED, as such a particle would be too small to 
reliably synthesize. However, ZnSe or ZnSeTe are suitable alterna-
tives. The best efficiency for blue using ZnSeTe QD has reached 
more than 20 percent.31 Thus, the efficiencies of nanoLEDs with 
Cd-free QDs have improved ~20 percent for all colors. This is the 
minimum acceptable efficiency for nanoLED to be used as pixels 
in displays. Efficiency affects power consumption of displays, so 
this is quite critical, especially for mobile display applications.

The lifetime of Cd-free QDs still needs improvement. Fig. 
5b plots the lifetime from an initial luminance of 100 nits to a 
reduction of 50 percent (T50). An improvement for red-emitting 
nanoLED using InP QD has been reported for achieving both 
high efficiency—comparable to toxic-based QD-LED—and a 
lifetime of more than one million hours.17 This was achieved 
using a chemical treatment to reduce oxygen formation at the 
interface between the core and the shell of the QD structure. 
However, the lifetime of green18,25-27 and blue22,31,32 still is less 
than 100,000 hours, which is insufficient for industrial appli-
cations. These lifetimes could be improved substantially in the 
future to realize nanoLED using all Cd-free QDs.

Journey to NanoLED
Most of the discussed developmental results of nanoLEDs are at 
the confirmation stage for basic performance as a light-emitting 
device. However, further refinements are needed. For example, 
RGB-patterned display devices using Cd-free QDs are ready for 
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Fig. 5. 
▶Progress of nanoLED (a) 
efficiency and (b) lifetime 
with Cd-free QDs.

Fig. 4. 
◀Micrograph of 3,994-ppi 
nanoLED pixels pat-
terned by  
photolithography.
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